High Confidence Groundwater Reserve Determination Study in the Berg Catchment

WP11398 Ecological Reference Conditions Report

Report Number: RDM/WMA19/02/CON/COMP/0522 October 2022

water & sanitation

Department: Water and Sanitation **REPUBLIC OF SOUTH AFRICA**

имуото.сом

High Confidence Groundwater Reserve Determination Study in the Berg Catchment WP11398

Ecological Reference Conditions Report

Report Number: RDM/WMA19/02/CON/COMP/0522

Version 2 – Final Draft

Prepared for:

Department of Water and Sanitation Chief Directorate: Water Ecosystems Management

PROJECT	:	High Confidence Groundwater Reserve Determination Study in the Berg Catchment
REPORT TITLE	:	Ecological Reference Conditions Report
CLIENT	:	Department of Water and Sanitation, Chief Directorate: Water Ecosystems Management
AUTHORS	:	Matthew Misrole Annalisa Vicente Eddie Wise Maposholi Mokhethi
REPORT STATUS	:	Final Draft
VERSION	:	2
UMVOTO REPORT NUMBER	:	1001/1/5/2022
CLIENT REPORT NUMBER	:	RDM/WMA19/02/CON/COMP/0522
DATE	:	November 2022
APPROVED BY	:	

UMVOTO South Africa (Pty) Ltd Managing Director Kornelius Riemann

UMVOTO South Africa (Pty) Ltd Technical Reviewer David McGibbon

Department of Water and Sanitation Chief Directorate: Water Ecosystems Management Project Manager Philani Khoza Department of Water and Sanitation Chief Directorate: Water Ecosystems Management Scientific Manager Kwazikwakhe Majola

Department of Water and Sanitation Chief Directorate: Water Ecosystems Management Director Yakeen Atwaru

Referencing

This report is to be referred to in bibliographies as:

Department of Water and Sanitation (DWS) (2022). High Confidence Groundwater Reserve Determination Study in the Berg Catchment – Ecological Reference Conditions Report. Prepared by M. Misrole, A. Vicente, E. Wise and M. Mokhethi of Umvoto South Africa Pty (Ltd.) on behalf of DWS. Version 1 / Final Draft; Report No. 1001/1/5/2022, pg.184

Report Status

Version	Status	Reviewed By	Date
1	Draft	D McGibbon	30/10/2022
1	Draft for submission	K Riemann	30/10/2022
2	Final Draft	D McGibbon	04/11/2022
2	Final Draft	K Riemann	08/11/2022

Distribution List

Version	Name	Institution	Date
1 – Draft	Philani Khoza	DWS	31/10/2022
1 – Draft	Kwazikwakhe Majola	DWS	31/10/2022
2 – Final Draft	Philani Khoza	DWS	08/11/2022
2 – Final Draft	Kwazikwakhe Majola	DWS	08/11/2022

Executive Summary

Due to the increasing number of Water Use Licence Applications (WULAs), and the associated effects the proposed developments may have on the groundwater Reserve in the Berg catchment, the Department of Water and Sanitation's (DWS) Chief Directorate: Water Ecosystems Management (CD: WEM) has initiated a High Confidence Groundwater Reserve Determination Study in order to assist the DWS in making sound management decisions regarding stressed or over-utilised water resources.

Through the implementation of the Resource Directed Measures (RDM), a process outlined in Regulation 2(4) of the National Water Act (No. 36 of 1998), and its obligation to ensure that all significant water resources are afforded a sustainable level of protection, the groundwater Reserve determination aims to support the gazetted Water Resource Classes and associated Resource Quality Objectives (RQOs) in completing the RDM.

Following the eight-step Reserve determination process, this report aims to describe the ecological reference conditions of aquifer-specific groundwater resource units (GRUs) and re-evaluate their present status. In the context of this study, 'ecological reference conditions' refers to the ambient or natural state of a groundwater system while the 'present status' refers to the current status in terms of utilisation and water quality. The report provides an overview of the previous groundwater status quo assessments and details around the criteria considered for a revised assessment.

The re-assessment of the groundwater status quo for the Berg catchment is Step 3 of the eight-step RDM: groundwater Reserve determination procedure (WRC, 2013), and, where appropriate, aligns with Step 1 and Step 2 of the Water Resource Classification process set out in Regulation 2(4). Five key hydrogeological components are discussed in this report, viz. Recharge, Groundwater Use, Discharge, Groundwater Quality and Aquifer Stress; which are important considerations for the implementation of an effective water resource management strategy.

<u>Recharge</u>

Several recharge estimation techniques were undertaken based on the hydrogeological nature of the specific GRUs. The selection considered the level of confidence and associated limitations of the methodology; the amount, spread and availability of data across the GRU; and the applicability of published datasets. Artificial recharge has been taken into account in the assessment, while lateral recharge from another aquifer unit will be addressed in the following step.

Groundwater Use

A variety of data sources were collated to assess the current groundwater use in the study area to provide a quantitative means of assessment (per GRU) as input to the groundwater Stress Index (SI). The index considers both groundwater water availability (natural/artificial recharge) and groundwater water use and aims to quantify Aquifer Stress by means of an associated Present Status (PS) category.

Discharge

Groundwater discharge represents the outflow of groundwater from aquifers to the surface or surface water systems as either direct or lateral via an adjacent aquifer unit. Groundwater contribution to baseflow was calculated to provide an aquifer specific estimation.

Groundwater Quality

Data from various sources was collated to provide a hydrochemical summary per GRU. Baseline water quality was assessed for each GRU (for select parameters) and potential sources of contamination identified. Selected groundwater parameters have also been evaluated for compliance with DWS (2019b:121) RQOs and groundwater quality Present Status categories assigned per GRU.

Page v

Aquifer Stress

In terms of the overall groundwater Reserve determination process, and in order to correlate the results of this study to existing Water Resource Classes & RQOs outlined in DWS (2019b: 121), the current ecological reference conditions were re-evaluated and the present state of the GRUs reassessed. Three guidance tables were used in the groundwater characterisation including 1) sustainable use, 2) level of stress, and 3) contamination / water quality, to define Present Status Category for both groundwater availability and groundwater quality per GRU.

Groundwater Availability Present Status Category	Description	Stress Index (GW use / Recharge)
А		<0.05
В	Unstressed or slightly stressed	0.05 – 0.20
С		0.20 – 0.40
D	Moderatly stressed	0.40 – 0.65
E	Highly stressed	0.65 – 0.95
F	Critically stressed	>0.95

Guide for determining groundwater availability Present Status Category

Guide for determining groundwater contamination / groundwater quality Present Status Category

Water Quality (Present Status) Category	Description	Percentage exceedance
А	Unmodified, pristine conditions	<16.7 %
В	Localised, low levels of contamination, but no negative impacts apparent	16.7 – 33.4 %
С	Moderate levels of localised contamination, but little or no negative impacts apparent	33.4 – 50.1 %
D	Moderate levels of widespread contamination, which limit the use of potential use of the aquifer	50.1 – 66.8 %
E	High levels of local contamination which render parts of the aquifer unusable	66.8 – 83.5 %
F	High levels of widespread contamination which render the aquifer unusable	>83.5 %

Summary of Present Status Category per Groundwater Resource Unit in the Berg catchment

GRU	Groundwater Availability Present Status Category	Groundwater Quality Present Status Category
Cape Flats	D	D
Atlantis	С	С
Yzerfontein	А	А
Elandsfontein	В	В
Langebaan Road	С	В
Adamboerskraal	В	В
Cape Peninsula	В	В
Steenbras-Nuweberg	В	В
Drakensteinberge	А	-
Wemmershoek	А	А
Voëlvlei-Slanghoek	А	-
Witsenberg	А	-
Groot Winterhoek	В	-
Piketberg	С	-
Cape Town Rim	С	С
Stellenbosch-Helderberg	С	С
Paarl-Franschhoek	С	-
Malmesbury	С	В
Wellington	В	В
Tulbagh	С	-
Eendekuil Basin	С	С
Middle-Lower Berg	В	С
Northern Swartland	В	C
Darling	В	С
Vredenberg	В	-

Page vii

Table of Contents

Chapter Description

EXEC	UTIVE	SUMMA	.RY	. V
	Table of	of Conter	nts	viii
	List of	Tables		x
	List of	Figures		xii
	List of A	Abbrevia	itions	xiii
1.	INTRO	ристю	N	. 1
	1.1.	Backgro	ound	1
	1.2.	Terms of	of Reference	4
	1.3.	Aims of	f this report	4
2.	PREVI	OUS ST	ATUS QUO	. 6
	2.1.	Summa	ary of Surface Water Status Quo	6
	2.2.	Summa	ary of Previous Groundwater Status Quo	6
	2.3.	Limitatio	ons	10
3.	GROU		ER RESOURCE UNITS	12
	3.1.	Study A	Area Description	14
		3.1.1.	Geological Description	14
		3.1.2.	Structural Description	16
		3.1.3.	Aquifer Type Description	16
4.	UPDA	3.1.3. TED STA	Aquifer Type Description	16 18
4.	UPDA 4.1.	3.1.3. F ED STA Rainfall	Aquifer Type Description ATUS QUO APPROACH I Data Comparison	16 18 19
4.	UPDA 4.1. 4.2.	3.1.3. F ED STA Rainfall Recharg	Aquifer Type Description ATUS QUO APPROACH I Data Comparison ge	16 18 19 20
4.	UPDA 4.1. 4.2.	3.1.3. FED STA Rainfall Rechar 4.2.1.	Aquifer Type Description ATUS QUO APPROACH I Data Comparison ge First-Order Recharge Estimation Methodologies	16 18 19 20 20
4.	UPDA 4.1. 4.2.	3.1.3. FED STA Rainfall Recharg 4.2.1. 4.2.2.	Aquifer Type Description ATUS QUO APPROACH I Data Comparison	
4.	UPDA 4.1. 4.2.	3.1.3. FED STA Rainfall Recharg 4.2.1. 4.2.2. 4.2.3. 4.2.4	Aquifer Type Description ATUS QUO APPROACH I Data Comparison ge First-Order Recharge Estimation Methodologies Second-Order Recharge Estimation Methodologies Available Literature Summary	
4.	UPDA 4.1. 4.2.	3.1.3. FED STA Rainfall Recharg 4.2.1. 4.2.2. 4.2.3. 4.2.4.	Aquifer Type Description ATUS QUO APPROACH I Data Comparison ge First-Order Recharge Estimation Methodologies Second-Order Recharge Estimation Methodologies Available Literature Summary	
4.	UPDA 4.1. 4.2. 4.3.	3.1.3. FED STA Rainfall Recharg 4.2.1. 4.2.2. 4.2.3. 4.2.4. Water u 4.3.1	Aquifer Type Description ATUS QUO APPROACH I Data Comparison	
4.	UPDA 4.1. 4.2. 4.3.	3.1.3. FED STA Rainfall Recharg 4.2.1. 4.2.2. 4.2.3. 4.2.4. Water u 4.3.1. 4.3.2.	Aquifer Type Description ATUS QUO APPROACH I Data Comparison	
4.	UPDA 4.1. 4.2. 4.3.	3.1.3. FED STA Rainfall Recharg 4.2.1. 4.2.2. 4.2.3. 4.2.4. Water u 4.3.1. 4.3.2. 4.3.3.	Aquifer Type Description ATUS QUO APPROACH	
4.	UPDA 4.1. 4.2. 4.3.	3.1.3. FED STA Rainfall Recharg 4.2.1. 4.2.2. 4.2.3. 4.2.4. Water u 4.3.1. 4.3.2. 4.3.3. Dischar	Aquifer Type Description ATUS QUO APPROACH	16 18 19 20 20 20 24 26 27 30 30 30 30 30 30 30 30 30 30
4.	UPDA 4.1. 4.2. 4.3.	3.1.3. FED STA Rainfall Recharg 4.2.1. 4.2.2. 4.2.3. 4.2.4. Water U 4.3.1. 4.3.2. 4.3.3. Dischar 4.4.1.	Aquifer Type Description	16 18 19 20 20 20 24 26 27 30 30 30 30 30 30 34 34
4.	UPDA 4.1. 4.2. 4.3.	3.1.3. FED STA Rainfall Recharg 4.2.1. 4.2.2. 4.2.3. 4.2.4. Water u 4.3.1. 4.3.2. 4.3.3. Dischar 4.4.1. 4.4.2.	Aquifer Type Description	16 18 19 20 20 24 26 27 30 30 30 30 30 30 34 34 34 34
4.	UPDA 4.1. 4.2. 4.3. 4.4. 4.5.	3.1.3. FED STA Rainfall Recharg 4.2.1. 4.2.2. 4.2.3. 4.2.4. Water u 4.3.1. 4.3.2. 4.3.3. Dischar 4.4.1. 4.4.2. Water C	Aquifer Type Description	16 18 19 20 20 20 20 20 20 20 20 20 20 20 20 21 26 27 30 31 34 36
4.	UPDA 4.1. 4.2. 4.3. 4.4. 4.5.	3.1.3. FED STA Rainfall Recharg 4.2.1. 4.2.2. 4.2.3. 4.2.4. Water U 4.3.1. 4.3.2. 4.3.3. Dischar 4.4.1. 4.4.2. Water C 4.5.1.	Aquifer Type Description	16 18 19 20 20 20 20 20 20 20 20 20 20 20 20 21 26 27 30 31 32 34 36 36

		4.5.3.	Baseline Water Quality	39
		4.5.4.	Resource Quality Objectives	46
		4.5.5.	Water Quality Categories	48
		4.5.6.	Summary	51
	4.6.	Aquifer	Stress	52
		4.6.1.	Methodology and Considerations	52
		4.6.2.	Summary	53
5.	STATU	S QUO	PER GRU	
	5.1.	Primarv	/ Intergranular GRUs	55
		5.1.1.	Cape Flats GRU	55
		5.1.2.	Atlantis GRU	60
		5.1.3.	Yzerfontein GRU	66
		5.1.4.	Elandsfontein GRU	71
		5.1.5.	Langebaan Road GRU	77
		5.1.6.	Adamboerskraal GRU	83
	5.2.	Fracture	ed Table Mountain Group GRUs	88
		5.2.1.	Cape Peninsula GRU	88
		5.2.2.	Steenbras-Nuweberg GRU	93
		5.2.3.	Drakensteinberge GRU	98
		5.2.4.	Wemmershoek GRU	. 102
		5.2.5.	Voëlvlei-Slanghoek GRU	. 107
		5.2.6.	Witsenberg GRU	. 111
		5.2.7.	Groot Winterhoek GRU	. 115
		5.2.8.	Piketberg GRU	. 119
	5.3.	Fracture	ed and Intergranular Basement GRUs	. 123
		5.3.1.	Cape Town Rim GRU	. 123
		5.3.2.	Stellenbosch-Helderberg GRU	. 129
		5.3.3.	Paarl-Franschhoek GRU	. 135
		5.3.4.	Malmesbury GRU	. 140
		5.3.5.	Wellington GRU	. 145
		5.3.6.	Tulbagh GRU	. 150
		5.3.7.	Eendekuil Basin GRU	. 154
		5.3.8.	Middle-Lower Berg GRU	. 159
		5.3.9.	Northern Swartland GRU	. 164
		5.3.10.	Darling GRU	. 169
		5.3.11.	Vredenburg GRU	. 174
6.	REFER	ENCES		
APPE	NDIX A	RECH	ARGEA	
APPE	NDIX B	: WATE	R USEB	
APPE		: DISCH	IARGEC	
APPE		: WATE	R QUALITYD	

List of Tables

Table 1-1	Summary of project phases, tasks, and associated deliverables for the High Confidence Groundwater Reserve Determination Study in the Berg Catchment. Reserve determination steps according to WRC (2013)
Table 2-1	Summary of previously defined GRUs for the Berg catchment with the associated boundary- forming surface water quaternary catchments (after DWS, 2016d). Areal extents of previous GRUs are shown in Figure 2-1
Table 2-2	Estimated recharge as a sum (M m ³ /a) and average (mm/a) per previously delineated GRU (after DWS, 2017a)
Table 2-3	Summary of groundwater use as registered in WARMS, including the number and sum of registrations (M m ³ /a) per previously delineated GRU (after DWS, 2017a)9
Table 2-4	Summary of groundwater use within the Berg catchment as registered in WARMS, including the sum of registrations (M m 3 /a) per water use sector (after DWS, 2017a)
Table 2-5	Summary of groundwater use as registered in WARMS, per major geological grouping (based on assigned surface geology to point data) for the Berg catchment (after DWS, 2017a)9
Table 2-6	Summary of settlements (per previously delineated GRU) supplied by groundwater within the Berg catchment (after DWS, 2017a)10
Table 2-7	Average groundwater quality parameters for major geological groupings (based on assigning surface geology to point data) and compared to DWAF Drinking Water Quality Limits (DWS, 2017a)
Table 3-1	Summary of Groundwater Resource Units (GRUs) in the Berg Catchment. Areal extents of GRUs are shown in Figure 3-112
Table 3-2	Stratigraphic overview of the Berg catchment area and its corresponding hydrostratigraphy (CoCT, 2020b; CoCT, 2021b)
Table 4-1	Summary of the available rainfall (mm) data in the Berg catchment compared to the Mean Annual Precipitation (MAP) of the WR2012 study
Table 4-2	Fixed percentage of MAP (per aquifer) used to estimate recharge in the Berg catchment (after DWAF, 2008b)21
Table 4-3	Rainfall dependent percentage of MAP factors after DWAF (2002)
Table 4-4	Aquifer-specific recharge factors after DWAF (2002)
Table 4-5	Available literature of estimated recharge per GRU for Primary / Intergranular Aquifers, Fractured Table Mountain Group Aquifers, and Fractured and Intergranular Basement Aquifers
Table 4-6	Summary of estimated recharge per GRU for Primary / Intergranular Aquifers, Fractured Table Mountain Group Aquifers, and Fractured and Intergranular Basement Aquifers
Table 4-7	Summary of total groundwater use, as registered in WARMS, for Primary / Intergranular Aquifers, Fractured Table Mountain Group Aquifers, Fractured and Intergranular Basement Aquifers
Table 4-8	Summary of water use registrations, as registered in WARMS, per RU
Table 4-9	Summary of water use sectors, as registered in WARMS, in terms of volume percent of water use per GRU
Table 4-10	Summary of estimated discharge per GRU for Primary / Intergranular Aquifers, Fractured Table Mountain Group Aquifers, and Fractured and Intergranular Basement Aquifers
Table 4-11	Number of groundwater quality monitoring locations per GRU
Table 4-12	Selection of boreholes representing the natural groundwater quality per GRU and rationale behind selection of each borehole (BH). The Stellenbosch-Helderberg GRU consists of two

Page x

representative boreholes due to the predominance of both the Tygerberg and Cape Granite Suite formations across the GRU......40

- Table 4-13Number of exceedances of baseline concentrations per GRU. Dashes indicate GRUs where no
exceedance of the baseline concentration was recorded or where no baseline was able to be
calculated due to lack of data. Red highlighted cells indicate parameters where at least 50% of
samples exceeded the baseline concentration.43
- Table 4-15Guide for determining groundwater contamination / groundwater quality Present Status
Category of a GRU. Adapted after WRC (2007).48
- Table 4-16 Derived water quality categories per parameter per GRU, based on percentage exceedance of baseline threshold concentrations. Dashes indicate parameters for which categories could not be established due to lack of data for a given parameter. For the Paarl-Franschhoek and Tulbagh GRU, categories have not been established because there is data from only one borehole in these GRUs, thus exceedance of baseline concentrations cannot be calculated. 50
- Table 4-17Summary of water types and water quality categories per GRU for Primary / Intergranular
Aquifers, Fractured Table Mountain Group Aquifers, and Fractured and Intergranular Basement
Aquifers. *For the Paarl-Franschhoek and Tulbagh GRU, categories have not been established
because there is data from only one borehole in these GRUs, thus exceedance of baseline
concentrations (and therefore categories) cannot be calculated.
- Table 4-19
 A summary of the present status category for both groundwater (recharge and use) and groundwater rquality for the Berg catchment.

 .54

List of Figures

Figure 1-1	Integrated Units of Analysis (IUAs), Water Resource Classes (WRCs) and Groundwater Classes for the Berg catchment after DWS (2019b: 121)
Figure 1-2	Priority quaternary catchments, biophysical sites (rivers nodes and estuaries nodes), and dams with gazetted Resource Quality Objectives (RQOs) after DWS (2019b: 121)
Figure 2-1	Previously defined Groundwater Resource Units (GRUs) for the Berg catchment (after DWS, 2016d)7
Figure 3-1	Revised Groundwater Resource Units (GRU) extents for the Berg catchment with associated geology and structural features (including hydrotects). GRUs are extended outside of the Berg catchment area, i.e., the former Berg Water Management Area (WMA), therefore study boundary extends outside of the Berg catchment
Figure 3-2	Revised Groundwater Resource Units (GRU) extents for the Berg catchment with associated aquifer types
Figure 4-1	The 8-step procedure for determining the groundwater Reserve and its alignment with the 7- step Water Resource Classification procedure as defined by Regulation 2(4) of the National Water Act (NWA, No. 36 of 1998) and outlined in WRC (2013)
Figure 4-2	Rainfall recharge distribution maps based on first order recharge estimation methods23
Figure 4-3	Natural recharge distribution map based on the map-centric recharge estimations method per GRU29
Figure 4-4	Total registered groundwater use per GRU, as registered in WARMS, indicating boreholes and associated water use sector
Figure 4-5	Groundwater monitoring locations per GRU in the Berg Catchment
Figure 4-6	Piper plots showing the distribution of water types across the Berg catchment. All GRUs consist predominantly of Na-Cl type waters. Other water types include mixed Ca-Mg-Cl, Ca-HCO ₃ and Ca-Na-HCO ₃ types

Page xii

List of Abbreviations

%	Percentage
~	Approximately
<	Less than
BH	Borehole
BHN	Basic Human Needs
BRBS	Breede River Basin Study
	Chief Directorate: Water Ecosystems Management
	Cono Elete Aquifor
	Cape Flats Aquiler
CAGE	Childsudi Anessan Groundwater Exploration
	City of Cape Town
CRD	Cumulative Rainfall Departure
DEM	Digital Elevation Model
DWA	Department of Water
DWAF	Department of Water Affairs and Forestry
DWS	Department of Water and Sanitation
E	East
EC	Electrical Conductivity
e.a.	For example
Ftal	and others
etc	etcetera
EW/R	Ecological Water Requirements
Em	Formation
	Coographic Information System
	Geographic Information System
GRAII	Groundwater Resource Assessment (Phase II)
GRUM	Groundwater Resource Directed Measure
GRU	Groundwater Resource Unit
Н	Hydrogen
i.e.	That is
IUA	Integrated Unit of Analysis
IWRM	Integrated Water Resource Management
Km	Kilometres
l/s	Litres per second
Ltd.	Limited Liability
m	Metres
m ³	Cubic Meters
M m ³	Million Cubic Meters
Ma	Million Years
MAF	Mean annual evanoration
mamel	Meters above mean sea level
MAD	Moon Annual Precipitation
	Menaged Aguifer Decharge
mm	
mm/a	Millimetres per annum
MOF	Model Overland Flow
MWL	Meteoric Water Line
N	North
NGA	National Groundwater Archive
NGDB	National Groundwater Database
NGwQMP	National Groundwater Quality Monitoring Programme
NWA	National Water Act
NWP	New Water Programme
	5

Page xiii

PCA	Potentially Contaminating Activities
PES	Present Ecological State
pg.	Page
PHA	Philippi Horticultural Area
PS	Present Status
PSP	Professional Service Provider
Pty.	Proprietary
QGIS	Quantum Geographic Information System
RDM	Resource Directed Measure
RIB	Rainfall Infiltration Breakthrough
RQIS	Resource Quality Information Services
RQO	Resource Quality Objective
RU	Resource Unit
S	South
SA	South African
SAWS	South African Weather Service
SI	Stress Index
SVF	Saturated Volume Fluctuation
TEC	Target Ecological Category
TMG	Table Mountain Group
TMGA	Table Mountain Group Aquifer
TOR	Terms of Reference
UTM	Universal Transverse Mercator
W	West
WAAS	Water Availability Assessment Study
WARMS	Water Use Allocation and Registration Management System
WCWSS	Western Cape Water Supply System
WGS	World Geodetic System
WGS84	World Geodetic System (84)
WMA	Water Management Area
WMS	Water Management System
WR2012	Water Resources of South Africa 2012
WRC	Water Research Commission
WRCs	Water Resource Classes
WRCS	Water Resource Classification System
WULA	Water Use Licence Application

1. INTRODUCTION

1.1. Background

The Department of Water and Sanitation (DWS) Chief Directorate: Water Ecosystems Management (CD: WEM) has initiated a "High Confidence Groundwater Reserve Determination Study for the Berg Catchment". The project will support the gazetted Water Resource Classes and Resource Quality Objectives (RQOs) for the Berg catchment (Gazette No.42451:121 of 10 May 2019; hereafter referred to as DWS, 2019b: 121). The increasing number of water use licence applications (WULAs), the associated impacts that the proposed developments might have on the availability or quality of water, the conservation status of various resources within the Berg catchment, and the complexity of the study site's geological and hydrogeological characteristics make it increasingly impossible to assess WULAs using a low confidence desktop groundwater Reserve.

Integrated Units of Analysis (IUAs), Water Resource Classes and associated RQOs, delineated for the Berg catchment (DWS, 2019b: 121), have been gazetted as outcomes of the "Determination of Water Resource Classifications and Resource Quality Objectives in the Berg Catchment" study completed by Aurecon (Pty) Ltd from 15 April 2016 to 15 October 2018 (hereafter referred to as DWS, 2016). The Gazette (DWS, 2019b: 121) includes both Water Classes (in terms of Section 13(4)(a)(i)(aa) of the National Water Act (NWA), 1998) and RQOs for prioritized Resource Units (RUs) (in terms of Section 13(4)(a)(i)(bb) of the NWA, 1998) according to the overall class per IUA within the Berg catchment.

- IUAs are classified into catchment configurations and Water Resource Classes (Figure 1-1). These configurations consist of various biophysical nodes representing estuary and river reaches/river RUs and provide the Target Ecological Category (TEC) to be achieved or maintained for each RU within each IUA. Water Resource Classes are classified into Class I (high environmental protection and minimal utilisation), Class II (moderate protection and moderate utilisation), or Class III (sustainable minimal protection and high utilisation).
- RQOs are defined for prioritised surface water RUs within each IUA in terms of water quantity, habitat and biota, and water quality (**Figure 1-2**). RQOs were established for RUs and biophysical nodes, including:
 - o Rivers
 - o Estuaries
 - o Dams
 - o Wetlands
- RQOs are defined for prioritised groundwater RUs within each IUA in terms of groundwater quantity (abstraction, low-flow in river, discharge and groundwater level) and groundwater quality (nutrients, salts, pathogens and various system variables).

This study aims to determine the required groundwater contribution in terms of quantity and quality to satisfy the Basic Human Needs (BHN) Reserve and Ecological Water Requirements (EWR) for the Berg catchment (DWS, 2022a).

Figure 1-1

Integrated Units of Analysis (IUAs), Water Resource Classes (WRCs) and Groundwater Classes for the Berg catchment after DWS (2019b: 121).

Figure 1-2

Priority quaternary catchments, biophysical sites (rivers nodes and estuaries nodes), and dams with gazetted Resource Quality Objectives (RQOs) after DWS (2019b: 121).

1.2. Terms of Reference

The Terms of Reference (TOR) for the study, as provided by the DWS CD: WEM, stipulates the aims and objectives as follows:

"The primary objective of this study is to determine a high confidence groundwater Reserve requirements (quantity and quality) to satisfy the basic human needs and to protect aquatic ecosystems in different priority water resources within the Berg catchment"

"Detailed determinations aim to produce high-confidence results, are based on sitespecific data collected by specialists and are used for all compulsory licensing exercises, as well as for the individual licence applications that could have a large impact on any catchment, or a relatively small impact on ecologically important and sensitive catchments"

The groundwater Reserve determination aims to support the gazetted Water Resource Classes and associated RQOs (DWS, 2019b: 121) in completing the Resource Directed Measures (RDM) process as defined by Regulation 2(4) of the NWA (No. 36 of 1998; referred to as Regulation 2(4) hereafter). The Reserve will assist the DWS in making sound management decisions regarding stressed or over-utilised catchments, and also ensuring that water resources are afforded a level of protection that will assure a sustainable level of utilisation in the future (DWS, 2022a).

1.3. Aims of this report

According to Regulation 2(4), the Reserve determination process must follow the eight-step procedure outlined in the RDM manuals. To distinguish between RDM in general and RDM related to groundwater, the term Groundwater Resource Directed Measures (GRDM) will be used. The GRDM manuals consulted for this report include WRC (2013), WRC (2007), as well as the preliminary findings from an ongoing review of RDM manuals by the Water Research Commission (WRC).

The aim of this report is to describe the ecological reference conditions and present state (i.e., Step 3 of the eight-step GRDM: Reserve determination procedure) of the aquifer-specific groundwater resource units (GRUs) delineated as part of Step 2 of the Reserve determination process (see DWS, 2022d). The ecological reference conditions and Present Status (PS) assessment will, where appropriate, align with Step 1 and Step 2 of the 7 step GRDM: Water Resource Classification procedure set out in Regulation 2(4) and outlined in WRC (2013).

This report will provide an overview of previous status quo assessments for groundwater in the Berg catchment and provide detail on both the approach and criteria considered for a revised groundwater status quo based on updated GRUs. Status quo descriptions will be provided per RU and summarised for the GRU as a whole. **The Ecological Status Report is Deliverable 3.2** of Phase 3 of this study.

A detailed overview of the study approach and the scope of work is outlined in the projects Inception Report (DWS, 2022a) and summarised in **Table 1-1**.

Table 1-1Summary of project phases, tasks, and associated deliverables for the High Confidence
Groundwater Reserve Determination Study in the Berg Catchment. Reserve
determination steps according to WRC (2013).

Phase 1	Project Inception						
Task 1	Inception		Deliverable 1: Inception Report				
Phase 2	Review of	f Water Resource Information and Da	ata				
Task 2.1	Data colle	ction and collation	Deliverable 2.1: Gap Analysis Report Deliverable 2.2: Inventory of Water Resource Models				
Phase 3	Reserve I	Determination					
Task 3.1	Step 1	Initiate Groundwater Reserve Study	Recorded in Deliverable 2.1 and Deliverable 2.2				
Task 3.2	Step 2	Water RU Delineation	Deliverable 3.1: Delineation of Water RUs Report				
Task 3.3	Step 3	Ecological Reference Conditions of RUs	Deliverable 3.2: Ecological Reference Conditions Report				
Task 3.4	Step 4	Determine BHN and EWR	Deliverable 3.3: BHN and EWR Requirement Report				
Task 3.5	Step 5	Operational Scenarios & Socio- economic	Deliverable 3.4: Operational Scenarios & Socio- Economic and Ecological Consequences Report				
Task 3.6	Step 6 Evaluate Operational Scenarios with Stakeholders		Deliverable 3.5: Stakeholder Engagement of Operational Scenarios Report				
Task 3.7	Step 7	Monitoring Programme	Deliverables 3.6: Monitoring Programme Report				
		Step 8 Gazette & implement Reserve	Deliverable 3.7: Groundwater Reserve Determination Report				
Task 3.8	Step 8		Deliverable 3.8: Database				
			Deliverable 3.9: Gazette Template				

2. PREVIOUS STATUS QUO

As part of the initiation of the RDM and the process for determining the Water Resource Classification in the Berg catchment, DWS (2016) provides a status quo assessment of all significant water resources (both surface water and groundwater) per IUA. The outcome of "The Determination of Water Resource Classifications and Resource Quality Objectives in the Berg Catchment" (DWS, 2016) will therefore be used as the foundational input for this study.

2.1. Summary of Surface Water Status Quo

DWS (2016) presents information relating to the individual sub-steps under Step 1 (i.e., Delineation of IUA and describe the status quo of the water resources) of the 7-Step RDM Water Resource Classification procedure (WRC, 2007), and includes descriptions of the present-day socio-economic status, the present-day community wellbeing, the value of water use, the value of ecosystem use, and the network of significant water resources and associated biophysical and allocation nodes within each IUA.

As stated in the Inception Report (DWS, 2022a), the outcomes and associated datasets that informed the gazetted Water Resource Classes and RQOs for the Berg catchment (DWS, 2019b: 121), specifically the DWS (2016) study and the resultant compilation of reports (DWS, 2016a - e, 2017a - d, 2018a - e, 2019), will provide the framework for the socio-economic, surface water (rivers, dams, estuaries, and wetlands) and ecological understandings of this high confidence groundwater Reserve determination. This data is considered sufficient as a PS assessment for surface water and will be used as inputs into the revised groundwater status quo.

2.2. Summary of Previous Groundwater Status Quo

Ten GRUs were delineated during the DWS (2016) study. The Resource Unit Delineation and Integrated Units of Analysis Report (DWS, 2016d) together with the Status Quo Report (DWS, 2017a) outlines the present status of groundwater in the Berg catchment (**Figure 2-1** and **Table 2-1**; after DWS, 2019b: 121).

The delineation approach, as described in DWS (2016d), considered both previous hydrogeological delineations, including the Integrated Water Resources Management (IWRM) domains delineated as part of DWAF (2007), as well as other hydrogeological features such as geological structures (fault zones, lithological contact zones and hydrostratigraphy), river systems, potential recharge and discharge zones, groundwater use, groundwater management (in terms of the size and extent of the units), and surface water divides on a quaternary and secondary catchment level scale. The Berg Water Availability Assessment Study's (WAAS) hydrogeological delineation, specifically the DWAF (2007), DWAF (2008a) and DWAF (2008b) reports, was a significant contributor to the previous GRUs defined for the Berg catchment. It formed the basis of the groundwater understanding in the DWS (2016) study in terms of GRU boundary extents, aquifer types, aquifer characteristics, regional groundwater flow, potential recharge, water quality and the overall conceptual understanding of the study area (see DWS, 2022d).

The status quo assessment, presented in DWS (2017a), provides a trend analysis of both groundwater quality and groundwater levels, and includes descriptions of estimated recharge (**Table 2-2**), groundwater use (**Table 2-3**, **Table 2-4**, and **Table 2-5**), groundwater quality (**Table 2-7**), and discharge estimations per GRU.

Figure 2-1

Previously defined Groundwater Resource Units (GRUs) for the Berg catchment (after DWS, 2016d).

EARTH | WATER | SCIENCE | LIFE

Comments on the monitored groundwater level decline (and what that may represent) were provided for each GRU by comparing both rainfall variations and the shape of the groundwater level decline curves to typical pump curves (by eye). This technique was applied based on the theoretical background described in DWS (2017a) that discusses how groundwater level decline alone cannot be used as an indication of maintainable abstraction rates or as a measure of un-sustainability (based on the definition of sustainable groundwater use (DWS, 2017a) as "groundwater use that is socially, environmentally (ecologically), and economically acceptable").

Table 2-1Summary of previously defined GRUs for the Berg catchment with the associated
boundary-forming surface water quaternary catchments (after DWS, 2016d). Areal
extents of previous GRUs are shown in Figure 2-1.

Sub-region	GRU	Associated Surface Water Quaternary Catchment	
	Peninsula	G22A and G22B	
Greater Cape Town	Cape Flats	G22C; G22D and G22E	
	Helderberg	G22G; G22H; G22K; G22J and G22F	
	Paarl- Upper Berg	G10A; G10B; G10C and G10D	
Upper Berg	Tulbagh Valley	G10E and G10F	
	24 Rivers	G10G; G10H and G10J	
	Piketberg	G30A; G30D and G10K	
Lower Berg	West Coast	G10K; G10M; G10L; G21A and G30A	
2010. 2019	Atlantis	G21B	
	Malmesbury	G21C; G21D; G21E and G21F	

Table 2-2Estimated recharge as a sum (M m³/a) and average (mm/a) per previously delineated
GRU (after DWS, 2017a).

Name	Sum (M m³/a)	Average (mm/a)	
24 Rivers	59.61	35	
Atlantis	16.36	40	
Cape Flats	66.13	86	
Helderberg	88.08	145	
Malmesbury	48.52	35	
Paarl-Upper Berg	197.14	150	
Peninsula	50.68	146	
Piketberg	31.56	23	
Tulbagh	50.85	54	
West Coast	112.37	21	
Total	721.3	n/a	

Table 2-3Summary of groundwater use as registered in WARMS, including the number and sum
of registrations (M m³/a) per previously delineated GRU (after DWS, 2017a).

Name	Number of Registrations	Sum of Registrations (M m³/a)	
24 Rivers	37	2.00	
Atlantis	23	7.51	
Cape Flats	125	11.62	
Helderberg	109	3.33	
Malmesbury	214	10.50	
Paarl-Upper Berg	325	10.77	
Peninsula	9	0.10	
Piketberg	64	6.20	
Tulbagh	104	5.66	
West Coast	68	8.21	
Total	1078	65.89	

Table 2-4Summary of groundwater use within the Berg catchment as registered in WARMS,
including the sum of registrations (M m³/a) per water use sector (after DWS, 2017a).

Water Use Sector	Sum of registrations (M m³/a)
Agriculture: Irrigation	47.05
Industry (Urban)	13.38
Agriculture: Watering Livestock	3.02
Water Supply Service	1.40
Agriculture: Aquaculture	0.53
Industry (Non-Urban)	0.22
Schedule 1	0.16
Urban (Excluding Industrial &/or Domestic)	0.08
Mining	0.04
Recreation	0.01
Total	65.89

Table 2-5Summary of groundwater use as registered in WARMS, per major geological grouping
(based on assigned surface geology to point data) for the Berg catchment (after DWS,
2017a)

Geological grouping	Sum of registrations (M m³/a)	Number of registrations	Average volume per registration (m³/a)	
Coastal Cenozoic Deposits	44.42	628	70 729	
TMG	7.09	88	80 579	
Basement And Intrusive	14.38	362	39 718	
Total	65.89	1078	n/a	

Table 2-6Summary of settlements (per previously delineated GRU) supplied by groundwater
within the Berg catchment (after DWS, 2017a).

GRU	Settlement	% GW supplied	GW Yield (M m³/a)
Atlantis	City of Cape Town (Atlantis Wellfield)	2	18.42
Cape Flats	City of Cape Town (Albion Spring)		
	Piketberg	25	0.24
24 Rivers	Porterville	23	0.2
Malmesbury	Malmesbury, Abbotsdale	1	0.02
Paarl-Upper Berg	Franschhoek & Groendal, La Motte, Wemmershoek, Roberstvlei	13	0.22
Piketberg Redelinghuys		100	0.05
	Tulbagh	4	0.03
Tulbagh	Riebeek Kasteel	1	0.003
	Aurora	100	0.06
West Coast	Hopefield	30	0.16
West Clast	Langebaan, Langebaanweg, Saldanha	17	1.35
Total	n/a	n/a	20.753

2.3. Limitations

Although DWS (2016d) considered geological controls, GRUs were primarily delineated according to surface water catchments with varying aquifer types grouped (see **Table 2-1** and **Figure 2-1**). A number of RUs were grouped into different sub-catchments in order to achieve the integration of both surface water and groundwater systems. Additionally, important aquifers such as the Table Mountain Group Aquifers (TMGA) in the Steenbras area, that the City of Cape Town (CoCT) is currently developing, were not included in any of the previous GRUs defined as part of the DWS (2016) study.

It is important to note that although the entire GRU was delineated, only the parts of the GRU that fell within the study area (i.e., the former Berg Water Management Area (WMA) – a surface water derived management boundary) was considered in the groundwater status quo (i.e., DWS, 2017a). Additionally, surface geology was assigned to point data due to the scarcity of datapoints (i.e., boreholes) with available geological logs, water levels and water quality data. This, however, was not a conclusive indicator of the targeted RU, which according to the TORs of this high confidence groundwater Reserve determination, is required for a comprehensive present state assessment for groundwater.

Table 2-7Average groundwater quality parameters for major geological groupings (based on
assigning surface geology to point data) and compared to DWAF Drinking Water
Quality Limits ¹ (DWS, 2017a).

		Drinking Water Quality Limits - DWAF, 1996; DOH and WRC, 1998			Major Geology Grouping		
		Class 1	Class 2	Class 3	Basement	TMG	Coastal Cenozoic Deposits
No. of locations					487	53	1472
pH Value at 25ºC	mg/l	5-6 or 9-9.5	4-5 or 9.5-10	3.5-4 or 10-10.5	7.37	6.31	7.25
Conductivity at 25°C	mS/m	70-150	150-370	370-520	329.76	70.18	185.34
Sodium (Na)	mg/l	100-200	200-600	600-1200	530.83	96.52	272.21
Calcium (Ca)	mg/l	80-150	150-300	>300	60.08	11.56	55.01
Magnesium (Mg)	mg/l	30-70	70-100	100-200	80.56	14.57	42.23
Fluoride (F)	mg/l	0.7-1	1-1.5	1.5-3.5	0.64	0.27	0.4
Chloride (Cl)	mg/l	100-200	200-600	600-1200	985.62	181.24	521.88
Sulphate (SO₄)	mg/l	200-400	400-600	600-1000	120.83	25.46	81.06
Total Alkalinity (CaCO₃)	mg/l				124.25	25.46	97.65
NO ₃ -N	mg/l	0-10	10-20	20-40	4.25	1.74	2.8

¹ Mean averages are presented. Medians are preferable for analysis of water quality however due to the large datasets automated averaging was necessary which does not accommodate medians. The values should be considered maximums as a mean can be significantly skewed by outliers.

3. GROUNDWATER RESOURCE UNITS

In order to meet the TOR for this study, the previous GRU delineation for the Berg catchment was re-evaluated and updated to ensure all groundwater resources are aquifer specific. The term "aquifer-specific" in this context indicates that GRU extents where selected based on the physical geometry (predominantly controlled by geology), recharge areas, and aquifer boundary conditions, therefore, a single GRU may contain multiple RUs.

DWS (2022d) outlines the approach for delineating aquifer-specific GRUs and provides detail around the physical, management and functional criteria considered for selecting their extents. The revised aquifer-specific GRU extents are seen in **Figure 3-1** with the associated quaternary catchments they incorporate or overlap included in **Table 3-1**.

Table 3-1Summary of Groundwater Resource Units (GRUs) in the Berg Catchment. Areal extents
of GRUs are shown in Figure 3-1.

GRU name	Associated Surface Water Quaternary Catchment					
Primary / Intergranular Aquifers						
Cape Flats	G22C, G22D and G22E					
Atlantis	G21A, G21B and G21D					
Yzerfontein	G21A					
Elandsfontein	G10M and G10L					
Langebaan Road	G10M and G10L					
Adamboerskraal	G10M, G10K and G30A					
Fractured Aquifers – Tab	le Mountain Group (TMG)					
Cape Peninsula	G22A, G22B, G22C and G22D					
Steenbras-Nuweberg	G40B, G40A, G40D, G22J, G22K, H60A and G40C					
Drakensteinberge	G10A, G10C, G22F, G22J, H60A and H60B					
Wemmershoek	G10B, G10A, G10C, H10J, H60B and H10K					
Voëlvlei-Slanghoek	G10E, G10J, G10D, G10F, H10E, H10F and H10J					
Witsenberg	G10E					
Groot Winterhoek	G10J, G10E, G10H, E10C and G10G					
Piketberg	G10M, G30D, G10K, G30A and G10H					
Fractured and Intergran	ular Aquifers - Basement					
Cape Town Rim	G22C, G22E, G22B and G22D					
Stellenbosch-Helderberg	G22G, G22H, G22F, G22J and G22K					
Paarl-Franschhoek	G10C, G10A and G10B					
Malmesbury	G201E, G21C, G21D, G21F and G21B					
Wellington	G10D and G10F					
Tulbagh	G10E and G10G					
Eendekuil Basin	G10H, G10J, G10F and G10K					
Middle-Lower Berg	G10J, G30A, G10K and G10M					
Northern Swartland	G10L					
Darling	G10L and G21A					
Vredenburg	G10M					

Figure 3-1

8-1 Revised Groundwater Resource Units (GRU) extents for the Berg catchment with associated geology and structural features (including hydrotects). GRUs are extended outside of the Berg catchment area, i.e., the former Berg Water Management Area (WMA), therefore study boundary extends outside of the Berg catchment.

3.1. Study Area Description

3.1.1. Geological Description

The geological history is described and can be followed alongside the summary in **Figure 3-1**. The basement geology of the Berg catchment predominantly comprises of the Neoproterozoic Malmesbury Group greywacke and shales deposited during the Saldanian orogeny (650 – 550 Ma; Barnett, et al., 1997). During and after orogenesis, the Malmesbury Group were intruded by the Cape Granite Suite plutons (630 – 520 Ma; Gresse, et al., 1992) and in some areas such (as Tulbagh and Franschhoek) some low-grade metamorphism took place on the Malmesbury Group rocks (Ransome & de Wit, 1992). A major unconformity separates the sequence after which the Klipheuwel Group was deposited in fault-bound basins defining the change in depositional environment from orogenic to rifting. This increase in accommodation space left by the Malmesbury Group allowed for the Klipheuwel Group to include more alluvial sediments (Broquet, 1992).

Significant erosion took place before the Cape Supergroup deposited, such that the TMG unconformably deposited over the Malmesbury Group ~510 Ma (Broquet, 1992). This began in a marine environment, starting with the Piekenierskloof and Graafwater formations followed by the Peninsula Formation. The Pakhuis and Cederberg formations (shale) deposited after this, followed by the Nardouw Subgroup hosting the Goudini (siltstone), Skuwerberg (sandstone) and Rietvlei (sandstone) formations. The TMG is known for forming the highly resistant sandstone/quartzite mountains of the Cape Fold Belt above the easily eroded valleys of the Malmesbury Group shales. After the deposition of the TMG, the Bokkeveld Group shales were deposited interbedded with thin sandstone strata (~390 Ma) representing an increase in subsidence and extension (Broquet, 1992). In the eastern part of the Berg area, the Witteberg Group is present as well as the unconformably overlain Karoo Supergroup.

Dolerite dykes intruded ~132 Ma into both the Malmesbury Group and the Cape Granite Suite and can be found in False Bay, in the south-western part of the Berg catchment (Reid, et al., 1991). The Cape orogeny, a mountain-building event of significant compressional tectonic activity was followed by rifting of the supercontinent Gondwana, whereby the Uitenhage Group deposited in basins (~177 Ma). After this period, significant erosion took place marking a major unconformity. The Tertiary to Recent cover unconformably overlayed the exposed geology, mostly being the Cape Supergroup or the basement cover of Malmesbury Group and Cape Granite Suite in the Berg catchment (see **Figure 3-1**). The Tertiary to Recent cover in the Berg area comprises of the erosive deposits some of which can be traced to the weathering of the TMG or Malmesbury Group. The Sandveld Group composing of the Elandsfontein, Saldana and Varswater formations of fluvial-marine, and the aeolian sands of the Springfontyn, Velddrif, Langebaan and Witzand formations are largely present.

Table 3-2Stratigraphic overview of the Berg catchment area and its corresponding
hydrostratigraphy (CoCT, 2020b; CoCT, 2021b).

	Stratigraph	וע	Hydrostratigraphy			
Supergr oup	Group	Formation	Superunit	Unit	Sub-unit	
	Witzand Major Prima Springfontyn Aquifer		Major Primary Aquifer	-	-	
	Sandveld	Langebaan	Primary Aquifer	-	-	
		Elandsfontyn	Major Primary Aquifer	-	-	
~~~~	Cape Orogeny (	~280-230 Ma) and r	najor unconformity / C	Gondwana breakup (~18	0-110 Ma) ~~~~	
	Witteberg	(various)	-	Various minor sar (Witpoort/F	ndstone aquifers Ioriskraal)	
	Bokkeveld	(various)	-	Gydo Mega-aquitard	Various minor sandstone formation subaquifers	
	Table Mountain				Rietvlei Subaquifer	
		Rietviei		Nardouw Aquifer	Verlorenvalley Mini- aquitard	
		Skuwerberg			Skuwerberg Sub- aquifer	
Cape		Goudini			Goudini Meso- aquitard	
		Cedarberg	Table Mountain	Winterhoek Mega- aquitard	Cedarberg Meso- aquitard	
		Pakhuis	Superaquiler		Pakhuis Mini- aquitard	
		Peninsula		Peninsula Aquifer	Platteklip Subaquifer	
				-	Leeukop Subaquifer	
		Graafwater		Graafwater Aquitard	-	
		Piekenierskloof		Piekenierskloof Aquifer	-	
	Klipheuwel			Pre-Cape Aquitards	-	
		~~~~ Major ur	conformity / period of	f rifting ~~~~		
Saldania	Cape Granite Suite	-	-	Basement Aquifers / Aquitards /	-	
Belt	Malmesbury			Aquicludes	-	

3.1.2. Structural Description

Due to the orogenic events, the Malmesbury Group hosts some faulting of both dip-slip and strikeslip mechanisms along with NW-striking fabric (Hartnady, et al., 1974). Other than those that have undergone reactivation through the structural inheritance of the Cape Supergroup, the older Malmesbury Group faults are not considered to be relevant to the Berg catchment study.

The Cape Supergroup faults are separated into two branches connected by a syntaxis. The western branch is orientated N-S while the southern branch is E-W. The Berg catchment is positioned South of the syntaxis, hence the majority of the faulting is orientated NW-SE. Movement of the Cape Fold Belt faults have been found to be of Jurassic-Cretaceous age, with some recent reactivation having occurred on the Milnerton Fault and Worcester Fault (Halbich, 1992). Other faults in the Berg catchment include the Colenzo, Moorreersburg, Piketberg-Aurora, Tulbagh Road, Elandskloof, La Motte, Klein Drakenstein and Du Toit Faults (all normal extensional and orientated roughly NW-SE). The Steenbras Fault is strike-slip and is the only fault in the study area orientated NE-SW.

The fold axes in the northern section of the Berg catchment trend N-S, while the central and southern section hosts mostly NE-SW trending folds along the Cape Fold Belt syntaxis. Piketberg, the southern Franschhoek mountains and the eastern section of the Berg catchment hosts folds with axes trending NW-SE.

3.1.3. Aquifer Type Description

Three types of aquifers are distinguished in the study area and are seen in **Figure 3-1**. Primary or 'intergranular' aquifers are defined as porous, sandy aquifers. These are attributed to the sediments of the Bredasdorp and Sandveld Group as well as Quaternary deposits form the Cape Flats Aquifer, Atlantis/Silwerstroom and the West Coast Yzerfontein, Adamboerskraal, Elandsfontein and Langebaan Road aquifers. Due to the unconsolidated nature of the sediments, infiltration is high and consequently may increasing the risk of contamination.

Secondary or 'fractured' aquifers are related to fracturing of the geology supporting the permeability of the aquifer. The resistant sandstone/quartzite Table Mountain Group hosts formations that allow for high yielding fractured aquifers with good water quality, namely the Peninsula and Nardouw (Skuwerberg and Rietvlei formation) aquifers.

Tertiary, regolith or 'intergranular-and-fractured' aquifers have both near-surface fracturing and chemical weathering influencing the aquifer. Areas with the geomorphically weak Malmesbury Group have fractures considered to be incapable of supporting an aquifer and so are considered to be regolith aquifers (DWAF, 2005).

Figure 3-2 Revised Groundwater Resource Units (GRU) extents for the Berg catchment with associated aquifer types.

4. UPDATED STATUS QUO APPROACH

The determination of the groundwater status quo or Present Status (PS) of groundwater in the Berg catchment is Step 3 of the eight-step GRDM: Reserve determination procedure (WRC, 2013), and will, where appropriate, align with Step 1 and Step 2 of the Water Resource Classification process set out in Regulation 2(4) (**Figure 4-1**). Redefined aquifer-specific GRUs, delineated as part of Step 2 (DWS, 2022d), are used to provide an updated groundwater status quo (considering the limitations of the previous GRU extents and the aquifer-specific nature of the updated GRUs).

Five key hydrogeological components are assessed; viz. Recharge, Groundwater Use, Discharge, Groundwater Quality and Aquifer Stress. Particular outcomes from the previous groundwater status quo (DWS, 2017a) and the datasets that informed the gazetted Water Resource Classes and RQOs, specifically DWS (2016) and DWAF (2007) provide inputs for the updated status quo approach and assessment.

Figure 4-1 The 8-step procedure for determining the groundwater Reserve and its alignment with the 7-step Water Resource Classification procedure as defined by Regulation 2(4) of the National Water Act (NWA, No. 36 of 1998) and outlined in WRC (2013).

4.1. Rainfall Data Comparison

To determine whether the WR2012 rainfall dataset is still relevant and can be used as input for first order recharge estimations, a rainfall comparison was undertaken with more recent available data in the Berg catchment. Several weather stations with more than 10 years of recent records were selected, namely from the Cape Flats, Atlantis, Steenbras/Nuweberg, and Eendekuil Basin GRUs, as well as two additional South African Weather Service (SAWS) stations. The location of each station is listed in **Table 4-1**, together with the calculated Mean Annual Precipitation (MAP) for the available period. The 30-year Climate Norm² MAP is only available for two stations (Cape Town International Airport and Atlantis) and as such, the MAP is calculated for the available data range at each station. These are then compared to the surrounding WR2012 MAP (after WRC, 2012).

As **Table 4-1** indicates, the 30-year and available data MAPs fall within the WR2012 MAP range. Most of the available rainfall data indicates a percentage difference of between 4% and 13%, thereby confirming the relevance of the WR2012 data set for the current study and its applicability as a first order recharge estimation input, given that the last few years included extreme weather events such as the Western Cape drought from 2015-2017.

GRU	Station Name	Longitude	Latitude	30-yr MAP	Available MAP	Available MAP year range	WR2012 MAP
Cape Flats	Cape Town International Airport	18.60200	-33.96300	498.7	504.6	1989-2021	535
Atlantis	Atlantis	18.48301	-33.60701	430.5	431.1	1990-2021	431
Steenbras / Nuweberg	Purgatory AWS	19.17571	-33.94993	-	1101.0	2005-2021	932
	Steenbras II	18.90000	-34.19000	-	1010.0	2010-2018	1088
Eendekuil Basin	Piketberg- Sapd	18.75400	-32.90600	-	424.5	2010-2021	410
Other (SAWS)	Eendekuil	18.88200	-32.68900	-	245.2	2010-2021	282
	Middeldeurvlei	18.92500	-32.79500	-	254.0	2010-2021	360

Table 4-1Summary of the available rainfall (mm) data in the Berg catchment compared to the
Mean Annual Precipitation (MAP) of the WR2012 study.

² 30-year Climate Norm (1991 to 2020): Climate Normal is a three-decade average of climatological parameters.

4.2. Recharge

The quantification of groundwater recharge is essential for determining the present status of groundwater in the Berg catchment and is an important consideration for the implementation of an effective water resource management strategy.

Several recharge estimation techniques are available, each having specific limitations. As a firstorder recharge estimation, which is a review and update of the Berg WAAS aquifer-specific estimations (DWAF, 2008a), four recharge estimation methods were selected (see **Section 4.2.1**). These include: 1) the Fixed Percentage of Mean Annual Precipitation (MAP) method; 2) the Groundwater Resource Assessment – Phase II (GRAII) Spatial Distribution (Modified) method; 3) the Empirical Rainfall-Recharge Relationship method; and 4) the Map-Centric Simulation method.

A GIS-based approach was undertaken to estimate recharge which is initially estimated per RU (subdivided into aquifer types including primary/intergranular aquifers, fractured TMGA, and fractured and intergranular basement aquifers) and totalled to provide a recharge estimation per GRU. To validate the result, the estimated recharge per RU is tabulated, and where significant variation exist between estimation methods, second-order recharge estimations will be undertaken or, where appropriate, recharge estimations from available literature will be used.

Second-order methods were selected based on the hydrogeological nature of the RUs and will only be used where sufficient data is available for any one method (see **Section 4.2.2**). These methods include 1) the Chloride Mass Balance (CMB) method, 2) the Cumulative Rainfall Departure (CRD) method, 3) the Saturated Volume Fluctuation (SVF) method, and 4) the Isotope method.

4.2.1. First-Order Recharge Estimation Methodologies

4.2.1.1. Fixed Percentage of MAP

The Fixed Percentage of MAP method, described in Bredenkamp *et al.*, (1995), provides an initial approximation of recharge by means of a simple rainfall / recharge relationship. From a literature review of previous recharge ranges within the TMG terrane, recharge to the Peninsula Aquifer, estimated using various methods (see DWAF, 2007), vary spatially between 7% and 43% of MAP with a spatial recharge average of approximately 23% of MAP (200 – 2000 mm/a). The infiltration rates for both TMG aquifers (i.e., the Peninsula and Nardouw Aquifers) were conservatively assumed in the Berg WAAS (DWAF, 2008b).

Recharge estimates; after Gerber (1980), Vandoolaeghe (1989), and SRK (2004), for primary/intergranular aquifers and fractured and intergranular basement aquifers; posit various percentages of MAP per RU, however, the estimates are mostly neither aquifer specific nor spatially weighted.

A GIS based approach was undertaken using the Water Resources of South Africa 2012 (WR2012) Study MAP data (after WRC, 2012) and applying the fixed percentage of MAP factors listed in **Table 4-2** per RU based on surface outcrop (see **Figure 4-2**). The results are aquifer specific (**APPENDIX A: Recharge**) and are summarised per GRU in **Table 4-6**.

Table 4-2Fixed percentage of MAP (per aquifer) used to estimate recharge in the Berg catchment
(after DWAF, 2008b).

Resource Unit	Fixed percentage of MAP (%)
Peninsula Aquifer	14
Nardouw Aquifer	7
Fractured Aquifers	6
Primary / Intergranular Aquifers	4
Fractured and Intergranular Aquifers	3

4.2.1.2. GRAII Spatial Distribution (Modified)

The final product of the GRAII (DWAF, 2006; Task 3aE: Recharge) is the calculation of groundwater recharge per quaternary catchment. Recharge rates were determined as both a long-term average value as well as a value per hydrological year, based on four recharge estimation methodologies, including: 1) the CMB method; 2) the Empirical Rainfall-Recharge Relationship method; 3) a layered GIS-based model and, 4) a cross calibration where the results were checked against available field measurements. The resulting recharge is a 1km-by-1km grid which is aggregated per quaternary catchment (DWAF, 2006).

Although the GRAII has been proven reliable against other recharge estimations (DWAF, 2008a); rainfall duration, rainfall intensity and groundwater flow processes (such as fracture dominated flow) were not factored.

A GIS based approach was undertaken using WR2012 rainfall data and applying the GRAII recharge percentage per WR2012 MAP pixel. The output was then applied per RU based on surface outcrop (see **Figure 4-2**). The results are aquifer specific (**APPENDIX A: Recharge**) and are summarised per GRU in **Table 4-6**.

4.2.1.3. Empirical Rainfall-Recharge Relationship

The Rainfall-Recharge Relationship method, developed during the Breede River Basin Study (DWAF, 2002), is a recharge estimation method which considers both MAP per quaternary catchment as well as the varying rock types and associated permeability within the study area.

This method proves useful in differentiating recharge between primary and secondary aquifers or aquifer type but is somewhat limited as it does not account for evapotranspiration rates and assumes that the aquifer is homogenous across the entire RU/aquifer domain.

A GIS based approach was undertaken using MAP from the WR2012 dataset and applying a rainfall factor (i.e., a rainfall-dependent percentage of MAP) (see **Table 4-3**) and a recharge factor based on aquifer type (see **Table 4-4**). The results (**Figure 4-2**) are aquifer specific (**APPENDIX A: Recharge**) and are summarised per GRU in **Table 4-6**.

Table 4-3 Rainfall dependent percentage of MAP factors after DWAF (2002).

МАР	Recharge % of MAP applied
0 – 300	3
300 – 600	6
600 – 900	9
900 – 1 200	12
1 200 – 1 500	15
1 500 – 1 800	18
1 800 – 2 100	21
2 100 – 2 400	24
2 400 – 2 700	27
2 700 – 3 000	30
3 000 – 3 300	33
3 300 – 3 600	36

Table 4-4 Aquifer-specific recharge factors after DWAF (2002).

Aquifer type	Recharge Factor
Peninsula Aquifer	1.0
Nardouw Aquifer	1.0
Fractured and Intergranular Basement Aquifers	0.7
Primary / Intergranular Aquifer	1.5

4.2.1.4. Map-Centric Simulation

The Map-Centric Simulation Method, which considers monthly winter rainfall, evapotranspiration, and mean annual runoff, was used as part of (DWAF, 2000b) and later modified for the Berg WAAS (DWAF, 2008a) to estimate aquifer-specific recharge, with the emphasis on altitude and slope (these being the controlling variables on MAP, temperature, and runoff). The method accounts for the following:

- 1. The seasonal fluctuations of recharge by using the average monthly precipitation (recalculated to match the revised Berg WAAS MAP distribution) as inputs to the recharge model.
- 2. Missing surface-run-off information for infiltration is overcome by using a calculated Model Overland Flow (MOF) per slope element as an input to the terrain model.
- 3. The actual evapotranspiration per Digital Elevation Model (DEM) pixel based on monthly temperature distribution and effective infiltration (i.e., MAP MOF).

A GIS based approach was undertaken for this report which uses the outputs of the Berg WAAS recharge estimations applied to RUs (established using surface outcrop, see **Figure 4-2**). The results are aquifer specific (**APPENDIX A: Recharge**) and are summarised per GRU (**Table 4-6**).

UMVOTO

4.2.2. Second-Order Recharge Estimation Methodologies

As stated previously in **Section 4.2**, validation against first-order recharge estimations for selected RUs will only be done (where data is available and if the recharge estimations in the available literature is no longer relevant) via methods listed in Section **4.2.2.4** to **4.2.2.4**. This will be combination of an Excel and GIS-based approach to estimate aquifer specific second-order recharge.

4.2.2.1. Chloride Mass Balance

The CMB technique estimates recharge by comparing the chloride concentration at the soil surface (from precipitation and dry deposition) with the chloride concentrations in the soil moisture (from wet deposition) (WRC, 2013). Because most plants do not absorb a considerable amount of chloride, the chloride ions concentrate in the soil through interception and evapotranspiration (Allison, et al., 1994). A piston-flow regime is assumed in the unsaturated zone such that the concentration of chloride increases through the root zone of the soil until a constant value is achieved; which indicates that no evaporation takes place below this depth (Gardner, 1967; Lerner, 1990).

This method uses the MAP, dry chloride deposition, chloride concentration in rain and chloride concentration of soil water below the active root zone (or in groundwater if there is a large presence of boreholes in the area). From this, a chloride depth profile can be created indicating wet/dry precipitation events.

Developed by Eriksson & Khunakasem (1969), the CMB method is considered a suitable environmental tracer for recharge estimation due to chloride's conservative properties and its abundance in rainwater (Allison, et al., 1994). This method calculates the moisture fluxes and recharge rates in the unsaturated zone but includes various limiting assumptions of the aquifer's characteristics: 1) a piston-flow regime is present, although this may be invalidated by complex pathways through the unsaturated zone, which may occur due to seasonal variability in rainfall, evapotranspiration and uneven topography, 2) the conservative nature of chloride (i.e., the conservation of mass between chloride in the atmosphere and the chloride flux below the surface), 3) chloride is only added to the system via precipitation, and 4) that the system maintains a steady-state in terms of chloride concentration and long-term precipitation (Edmunds, et al., 1988).

Possible complications include the lateral movement of chloride towards the root zone resulting in an overestimation of recharge; lithologies with anions (such as negatively charged clay particles) can repel chloride ions, causing them to move faster than water molecules (James & Rubin, 1986; Bresler, 1973), some vegetation may take up chloride (through weathering and dissolution) although nutrient cycling may balance this, fertilisers may add chloride to the system; preferential flow may extend further than the root zone (Edmunds, 1988) and anthropogenic activities may add to the amount of chloride in the groundwater (Gvirtzman & Magaritz, 1986).

4.2.2.2. Cumulative Rainfall Departure

The Cumulative Rainfall Departure (CRD) method assumes that variations in groundwater levels directly correlate to rainfall events and that equilibrium between these will be reached over time (WRC, 2013; Bredenkamp, 1995).

This method provides an integrated recharge estimate by considering monthly abstraction, inflow and outflow rates and groundwater level data, although can be considered somewhat ambiguous due to the uncertainty introduced in the calculation of the amount of inflow and outflow from the aquifer (particularly for deep aquifers where rainfall recharge may be weakened).

4.2.2.3. Saturated Volume Fluctuation

The Saturated Volume Fluctuation (SVF) method considers water level fluctuations, abstraction from the aquifer and natural inflow and outflow rates (Bredenkamp, et al., 1995). This provides a representation of the aquifer with an arbitrary aquifer size determined such that the volumes are positive.

Uncertainty is introduced in the calculation of the amount of inflow and outflow from the aquifer. Successful application of this method requires a substantial spatial distribution of boreholes which are ideally situated outside the areas of influence of active pumping scheme.

4.2.2.4. Isotopes

Isotopes of oxygen-18 (¹⁸O) and deuterium (²H) are naturally occurring stable isotopes and are commonly used to determine the origin of groundwater (Selaolo, 1998). According to Allison *et al.*, (1983), recharge estimates may be derived from the ² δ displacement of soil moisture from the local meteoric water line (MWL), which is proportional to the inverse of the square root of the recharge rate. The amount of displacement from the MWL is a result of isotopic enrichment in the upper soil layers due to evaporation - which may in turn be balanced by dilution due to rainfall described by the following general equation:

$$\Delta \delta = \frac{C}{\sqrt{Recharge}}$$

The constant C represents the slope of a line through the inverse of the square root of recharge rates obtained from other recharge estimation methods (e.g., chloride profiling of soil moisture (Selaolo, 1998). In South Africa, the constant C is usually considered as 20 (WRC, 2013). One notable limitation to this method is that an uncertainty is introduced for aquifers which receive < 20 mm/a.¹⁸O and ²H enriches in the soil by evaporation and dilutes by rainfall, hence the concentration of ¹⁸O and ²H decreases at a rate of the square root of time from the last rainfall event (WRC, 2013).

4.2.3. Available Literature

Recharge estimates from available literature is provided in **Table 4-5** per GRU, where available. Where appropriate, second-order recharge estimation results from available literature are used. The results are summarised per GRU in **Table 4-6**.

Table 4-5Available literature of estimated recharge per GRU for Primary / Intergranular Aquifers,
Fractured Table Mountain Group Aquifers, and Fractured and Intergranular Basement
Aquifers

GRU		Source	Methods	Recharge Volume (M m³/a)	Avg. Recharge Rate (mm/a)
			Water Balance	57.9	134.4
			Qualified Guess - Soil	30.6	70.9
			Qualified Guess - Geology	46.6	108.2
			Qualified Guess - Vegter	28.0	65.0
		(CoCT, 2018)	Qualified Guess - Acru	43.1	100.0
			Harvest Potential	32.3	75.0
Cape Flats			СМВ	36.6	85.0
			CRD	49.5	114.9
			Isotopes: 2H	45.3	105.2
		(DWAF, 2002)	BRBS	27.8	64.6
		(Seyler, et al., 2016)	Surface Water Model	52.6	-
		(Vandoolaeghe, 1989)	Not Specified	117.0	145.9
		(Gerber, 1980)	Not Specified	61.5	76.7
			Qualified Guess - Soil	20.7	80.0
			Qualified Guess - Geology	29.2	113.0
			Qualified Guess - Vegter	8.3	32.0
		(CoCT, 2020c)	Qualified Guess - Acru	18.1	70.0
Atlantis			Harvest Potential	19.4	75.0
			СМВ	21.7	84.0
			CRD	28.2	109.0
		(Du Toit, et al., 1995)	Not Specified	-	9.0 - 44.0
	•	(Zhang, et al., in prep)	Second Model Calibration	-	18 - 69.0
			CMB ³	16.9	31.7
	Upper	(Spannenberg, 2015)	Rainfall Infiltration Breakthrough RIB ³	20.7	38.8
Elandsfontein				-	29.0
				-	48.8
	Lower	(Ebrahim, 2015)	20103	-	0.74
			KIB	-	2.5

³ Recharge estimates have been converted from percentage MAP based on (WRC, 2000)

GRU		Source	Methods	Recharge Volume (M m³/a)	Avg. Recharge Rate (mm/a)			
		(Andries, 2019)	СМВ	4.7	5.2			
	Upper		CMB ³	17.8	19.7			
		(Spannenberg, 2015)	RIB ³	20.5	22.7			
			0.152	-	19.6			
Langebaan Road	Lower	(Ebrahim, 2015)	CMB3	-	36.3			
				-	3.2			
			RIB ³	-	15.2			
	Whole	(Weaver & Talma, 2005)	CMB ³	-	25.7 – 35.8			
	GRU	(Tiimerman, 1985)	Not Specified ³	-	39.5			
		Fractured Table Mou	ntain Group Aquifers					
Steenbras-Nuweb	berg	(CoCT, 2022)	GRAII	28.6	391.11			
Fractured And Intergranular Basement Aquifers								
Middle-Lower Bei	g	(Naicker & Demlie, 2014)	Water Balance	-	25 - 90			
Vredenberg		(Du Toit & Weaver, 1995)	Reverse Modelling Techniques	-	25 - 38			

4.2.4. Summary

Recharge estimations were selected from the methods described in **Section 4.2.1 - 4.2.3** per GRU, and are summarized in **Table 4-6**. The selection considered, 1) the level of confidence and associated limitations of the methodology; 2) the amount, spread and availability of data across the GRU; and 3) the applicability of published datasets. No second order recharge was necessary due to the validity of available literature data.

Table 4-6 Summary of estimated recharge per GRU for Primary / Intergranular Aquifers, Fractured Table Mountain Group Aquifers, and Fractured and Intergranular Basement Aquifers.

GRU	Area (km²)	Rainfall Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)	Total Recharge Volume (M m ³ /a)						
Primary / Intergranular Aquifers										
Cape Flats ⁴	421.94	41.25	97.76	55.85						
Atlantis ⁵	255.68	22.74	88.94	27.85						
Yzerfontien ⁶	320.33	9.20	28.72	9.20						
Elandsfontien ⁶	532.57	15.47	29.05	15.47						
Langebaan Road ⁶	903.71	23.28	25.76	23.28						
Adamboerskraal ⁶	612.30	21.61	35.29	21.61						
	Fractured	Table Mountain Group	Aquifers							
Cape Peninsula ⁶	292.53	10.99	37.57	10.99						
Steenbras- Nuweberg ⁷	150.24	58.76	391.11	58.76						
Drakensteinberge ⁶	164.95	27.60	167.32	27.60						
Wemmershoek ⁶	229.13	26.83	117.10	26.83						
Voëlvlei-Slanghoek6	184.26	14.10	76.52	14.10						
Witsenberg ⁶	39.95	2.78	69.59	2.78						
Grootwinterhoek ⁶	379.26	22.50	59.33	22.50						
Piketberg ⁶	298.29	20.33	68.16	20.33						
	Fractured an	d Intergranular Baseme	ent Aquifers							
Cape Town Rim ⁶	814.62	18.60	22.83	18.60						
Stellenbosch- Helderberg ⁶	570.58	41.52	72.77	41.52						
Paarl-Franschoek ⁶	368.50	26.61	72.21	26.61						
Malmesbury ⁶	1600.36	52.65	32.90	52.65						
Wellington ⁶	1068.81	39.49	36.95	39.49						
Tulbagh ⁶	291.38	10.87	37.31	10.87						
Eendekuil Basin ⁶	936.94	21.88	23.35	21.88						
Middle-Lower Berg ⁶	1485.40	42.49	28.61	42.49						
Northern Swartland ⁶	1257.65	31.85	25.33	31.85						
Darling ⁶	408.82	9.95	24.34	9.95						
Vreedenberg ⁶	376.18	7.43	19.75	7.43						
Total	13964.38	1313.09	n/a	597.38						

⁴ Rainfall recharge value is from a model-based calibrated recharge estimation (after CoCT, 2018). The total recharge volume includes MAR of up to 14.6 M m³/a as per NWA Section 21(e) water use licence.

⁵ Rainfall recharge value is from a model-based calibrated recharge estimation (after CoCT, 2020b). The total recharge volume includes MAR of up to 5.11 M m³/a as per NWA Section 21(e) water use licence. ⁶ Rainfall recharge value is from the first order Map-Centric Simulation method.

⁷ Rainfall recharge value is from the first order GRAII Spatial Distribution (modified after CoCT, 2022)

Figure 4-3 Natural recharge distribution map based on the map-centric recharge estimations method per GRU

4.3. Water use

To provide a quantitative means of assessment, a groundwater Stress Index (SI) has been developed (see **Section 4.6**), which considers groundwater water availability (recharge) and groundwater water use (an important input for defining Aquifer Stress and determining the Present Status category).

4.3.1. Data Sources

A variety of data sources were collated to assess the current groundwater use in the study area. Data sources include: 1) Water Use Authorization and Registration Management System (WARMS – downloaded September 2022); 2) the National Groundwater Archive (NGA – downloaded April 2022); 3) Augmentation and reconciliation strategies and other ongoing studies, including the All Towns Reconciliation Strategies for the Southern Planning Region (DWA, 2014, and updates from the current study) and the Water Reconciliation Strategy for the Western Cape Water Supply System (WCWSS; DWS, 2015), and 4) GRAII's calculation of urban and domestic water use.

4.3.2. Assigning Resource Units

Unfortunately, the data, on which the GRAII results are based, were not available to recalculate the results and to assign groundwater abstraction to the different RUs. Therefore, the required detail of the spatial component of the data is lost and will not be included in this present status assessment. The WARMS database is lacking as far as assigning registered volumes to an aquifer unit (see DWS, 2022b); therefore, two approaches were used to broach this data gap.

- 1. Where appropriate, it was decided to liaise with various project specialists to provide qualified guesses on registered use and associated aquifer unit.
- 2. Assigning the registered groundwater abstraction in the WARMS database to aquifer units by linking registered use with boreholes in the NGA and assigning registered volumes pro rata to the number of boreholes in different aquifers.

4.3.3. Summary

The registered groundwater use from the WARMS dataset is outlined in **Table 4-7** according to the number of registered users and the total volume per GRU. The dataset is further subdivided according to RUs across the entire study area (see **Table 4-8**).

Registered groundwater use per water use sector is provided in **Table 4-9** as the percentage of total registered volume per GRU. The distributions of registrations and the associated water use sectors are displayed in **Figure 4-4**.

Table 4-7 Summary of total groundwater use, as registered in WARMS, for Primary / Intergranular Aquifers, Fractured Table Mountain Group Aquifers, Fractured and Intergranular **Basement Aquifers.**

GRU	No. of Registered Users	Total Volume (M m³/a)							
Primary / Intergranular Aquifers									
Cape Flats ⁸	95	26.6							
Atlantis ⁹	24	6.76							
Yzerfontein ¹⁰	1	0.26							
Elandsfontein	4	1.09							
Langebaan Road	33	8.59							
Adamboerskraal	12	2.13							
Fractured Table Mountain Group Aquifers									
Cape Peninsula	8	0.07							
Steenbras-Nuweberg ¹¹	1	9.13							
Drakensteinberge	2	0.05							
Wemmershoek	15	0.81							
Voëlvlei-Slanghoek	3	0.13							
Witsenberg	3	0.08							
Groot Winterhoek	11	1.39							
Piketberg	52	5.58							
	Fractured and Intergranular Basement	t							
Cape Town Rim	161	6.21							
Stellenbosch-Helderberg	163	8.81							
Paarl-Franschhoek	268	9.82							
Malmesbury	245	14.75							
Wellington	117	4.48							
Tulbagh	81	3.78							
Eendekuil Basin	33	4.85							
Middle-Lower Berg	32	2.23							
Northern Swartland	19	1.79							
Darling ¹⁰	9	0.76							
Vredenberg	66	1.16							
Total	1458	121.31							

Table 4-8 Summary of water use registrations, as registered in WARMS, per RU.

Aquifer Unit	Sum of volumes of registrations (M m ³ /a)	Mean registration volume (M m³/a)	Number of registrations
Primary / Intergranular Aquifers	79.75	0.09	843
Peninsula Aquifer	6.07	0.08	78
Nardouw Aquifer	10.87	0.64	17
Fractured and Intergranular Basement Aquifers	24.01	0.05	459
Fractured and Intergranular Other Aquifers	0.61	0.07	9

⁸ Includes city municipal abstraction of 20 M m³/a in development as per NWA Section 21(a)

 ⁹ Includes city municipal abstraction of 5 M m³/a as per NWA Section 21(a).
 ¹⁰ The WARMS dataset places Yzerfontein's municipal abstraction of 0.26 M m³/a in the Darling GRU. It has been updated to reflect for the Yzerfontein GRU.

¹¹ Includes city municipal abstraction of 9.13 M m³/a in development (phase 1) as per NWA Section 21(a)

Table 4-9Summary of water use sectors, as registered in WARMS, in terms of volume percent of
water use per GRU.

GRU	Agriculture: Aquaculture (% of Total Volume)	Agriculture: Irrigation (% of Total Volume)	Agriculture: Watering Livestock (% of Total Volume)	Industry (Non-Urban) (% of Total Volume)	Industry (Urban) (% of Total Volume)	Mining (% of Total Volume)	Recreation (% of Total Volume)	Schedule 1 (% of Total Volume)	Urban Excluding (Industrial &/Or Domestic) (% of Total	Water Supply Service (% of Total Volume)
		Prir	mary / In	tergranu	lar Aquif	ers				
Cape Flats	-	15.3	0.2	3.9	3.7	1.5	-	-	0.1	75.4
Atlantis	-	2.3	4.8	0.6	86.8	5.4	-	-	-	-
Yzerfontein	-	-	-	-	-	-	-	-	-	100
Elandsfontein	-	35.3	-	-	0.6	64.1	-	-	-	-
Langebaan Road	-	18.4	1.1	0.1	0.4	-	-	-	-	79.9
Adamboerskraal	-	62.9	-	-	37.1	-	-	-	-	-
Eractured Table Mountain Group Aquifere										
Cape Peninsula	-	71.2	13.9	-	14.9	-	-	-	-	-
Steenbras-Nuweberg	-	-	-	-	-	-	-	-	-	100
Drakensteinberge	-	100	-	-	-	-	-	-	-	-
Wemmershoek	36.3	53.8	-	-	9.9	-	-	-	-	-
Voëlvlei-Slanghoek	-	26.9	73.1	-	-	-	-	-	-	-
Witsenberg	4	100	-	-	-	-	-	-	-	-
Groot Winterhoek	-	99.6	-	0.4	-	-	-	-	-	-
Piketberg	-	97.8	-	-	1.0	-	-	-	-	1.2
		Fractu	red and I	Intergran	ular Bas	ement				
Cape Town Rim	0.1	39.0	1.5	3.6	43.5	-	-	0.4	0.5	11.5
Stellenbosch-Helderberg	-	21.9	0.1	1.9	11.2	-	0.2	0.4	-	64.3
Paarl-Franschhoek	2.2	61.1	1.8	4.4	15.1	-	-	0.6	0.1	14.7
Malmesbury	0.1	67.5	17.0	0.9	12.4	-	-	0.1	0.1	1.9
Wellington	3.6	82.7	7.1	0.1	5.2	-	0.1	0.3	-	1.0
Tulbagh	-	97.6	0.4	0.4	1.0	-	-	0.1	-	0.6
Eendekuil Basin	-	36.7	1.3	-	0.1	-	-	-	-	61.9
Middle-Lower Berg	-	97.5	-	-	-	-	-	-	-	2.5
Northern Swartland	-	72.3	8.7	-	19.0	-	-	-	-	-
Darling	-	93.0	6.2	-	0.8	-	-	-	-	-
Vredenburg	-	21.8	-	-	12.8	-	-	-	65.4	-

Figure 4-4 Total registered groundwater use per GRU, as registered in WARMS, indicating boreholes and associated water use sector.

4.4. Discharge

Groundwater discharge represents the outflow of groundwater from aquifers to surface or subsurface water systems. Discharge from aquifers occur as either: 1) natural discharge via groundwater contribution to surface water systems (i.e., river baseflow, seeps, and springs) and 2) lateral discharge into another aquifer unit.

4.4.1. Natural discharge

The conventional way to estimate natural discharge from aquifers into river reaches is to use the baseflow separation methodology (DWAF, 2008b). Historically, hydrologists separated river flow into floods and baseflow components based on flow characteristics, while geohydrologists considered the component derived from groundwater (i.e., groundwater's contribution to the surface water system).

Baseflow estimates were presented in the Berg WAAS (DWAF, 2008b) based on methods by Schulze, et al.,(1997); Pitman, (1973) and Hughes & Metzler, (1998). The findings showed that baseflow estimates obtained a high degree of variation and were somewhat subjective due to the limitations of the methods applied. Therefore, these results were not considered. The baseflow data from the GRDM however was deemed suitable for a "groundwater contribution to baseflow" estimate as it was prepared for a groundwater Reserve determination and resource evaluation. The disadvantage with using this dataset is that baseflow or groundwater contribution to baseflow is quantified per quaternary catchment (i.e., not aquifer specific).

To calculate aquifer-specific groundwater contribution to baseflow the sourced 'Groundwater Contribution to Baseflow' per Aquifer, based on equivalent recharge' from DWAF (2008b) was spatially disaggregated and totalled to provide a groundwater contribution to baseflow estimate per GRU. The results per RU are presented in **APPENDIX C: Discharge** and summarised per GRU in **Table 4-10**.

Although this is sufficient as first order discharge estimation, there are some limitations to the approach. The spatial disaggregation of data lacks some physical meaning as it is assuming all RUs present in the catchment have continuous contact with a river and neglects the three-dimensional relationship between different aquifers (including subsurface transfer between aquifer units), surface water bodies (including groundwater discharge to the ocean) and springs. It also neglects the fact that runoff, through flow and interflow contribution to baseflow can vary significantly at different points along a river reach.

This element will be further investigated in Step 4 (i.e., Determine BHN and EWR) of the Reserve determination process.

4.4.2. Lateral Discharge/Recharge

Groundwater can also discharge from one aquifer unit into another adjacent aquifer through lateral or vertical subsurface flow, which is termed lateral discharge or lateral recharge. There are geological interpretations and anecdotal evidence that support this being a relevant factor for several of the GRUs. The Berg WAAS study (DWS, 2008b) investigated this phenomenon and the potential hydraulic connection between the Peninsula and Nardouw aquifers, and identified zones of direct geological contact that potentially lead to lateral flows between these units. There are also major fault structures (so-called hydrotects) that connect different aquifer units and potentially recharge aquifers in other RUs or GRUs.

The quantification of lateral discharge will be addressed in Step 4 (i.e., Determine BHN and EWR) of the Reserve determination process, where anecdotal evidence exists.

Table 4-10Summary of estimated discharge per GRU for Primary / Intergranular Aquifers,
Fractured Table Mountain Group Aquifers, and Fractured and Intergranular Basement
Aquifers.

GRU	GRDM Total Groundwater contribution to Baseflow (M m³/a)									
Primary / Intergranular Aquifers										
Cape Flats ¹²	2.70									
Atlantis ¹²	0.20									
Yzerfontein ¹²	0.19									
Elandsfontein ¹²	0.0005									
Langebaan Road ¹²	0.00									
Adamboerskraal ¹²	0.00									
Fractured Table Mountain Group Aquifers										
Cape Peninsula ¹²	4.31									
Steenbras-Nuweberg ¹²	7.93									
Drakensteinberge	7.56									
Wemmershoek	9.92									
Voëlvlei-Slanghoek	4.18									
Witsenberg	0.93									
Grootwinterhoek	7.62									
Piketberg ¹²	0.12									
Fractured and Intergran	ular Basement Aquifers									
Cape Town Rim ¹²	3.03									
Stellenbosch-Helderberg ¹²	7.60									
Paarl-Franschoek	4.73									
Malmesbury	11.83									
Wellington	7.95									
Tulbagh	3.64									
Eendekuil Basin	4.53									
Middle-Lower Berg ¹²	3.57									
Northern Swartland	0.02									
Darling	0.08									
Vredenberg ¹²	0.00									
Total	90.19									

¹² Submarine discharge was not included in the discharge estimation.

4.5. Water Quality

This section aims to describe the present status of groundwater quality in the Berg catchment. Data from various sources has been considered and a basic hydrochemical analysis undertaken. The baseline water quality has been assessed for each GRU and RU, for select parameters, and potential sources of contamination investigated. Select parameters have also been assessed for compliance with DWS, 2019b:121 Resource Quality Objectives (RQOs) and water quality classes established per parameter and per GRU.

4.5.1. Data Sources

To assess the present status of groundwater quality of the Berg catchment, available monitoring data from the following sources were assessed:

- Water Management System (WMS)
- City of Cape Town (CoCT)
 - New Water Programme (Cape Flats Aquifer (CFA), Atlantis, TMGA)
 - Historical data (Steenbras-Nuweberg and Wemmershoek exploration)

The WMS data was used as the primary dataset, with CoCT data used to supplement in GRUs where no WMS monitoring points were available, with the exception of the Steenbras-Nuweberg and Wemmershoek GRUs, where CoCT data was used as the primary dataset due to the absence of WMS data. **Table 4-11** shows the number of monitoring locations (boreholes) per GRU, with a total of 358 unique locations. Of the 25 GRUs under consideration, 6 had no monitoring data, 5 of which are within the group of fractured Table Mountain Group Aquifers (TMGA). Monitoring locations are presented in **Figure 4-5**.

Evaluation of the present status of groundwater quality is based on the following two-fold approach:

- 1. Baseline chemistry and groundwater quality assessment
- 2. Comparison of data to the DWS, (2019b:121) RQOs established for groundwater.

Assessment of the water quality per GRU is based on the 3 types of aquifers that occur in the study area (**Table 4-11**). In the absence of borehole construction data and geological logs for the boreholes, where more than one aquifer type is present in a GRU, the aquifer penetrated by a borehole cannot be known conclusively. Therefore, monitoring points are assigned to the prevailing aquifer type. For the Steenbras-Nuweberg GRU, the aquifer type is further divided into two resource units, the Nardouw Aquifer and Peninsula Aquifer, as these are the two main aquifers that make up the TMGA

Groundwater monitoring locations per GRU in the Berg Catchment.

Table 4-11Number of groundwater quality monitoring locations per GRU.

Groundwater Resource Unit	Number of boreholes									
Primary / Intergra	anular Aquifers									
Adamboerskraal	3									
Atlantis	31									
Cape Flats	37									
Elandsfontein	3									
Langebaan Road	15									
Yzerfontein	41									
Fractured Table Mountain Group Aquifers										
Cape Peninsula	11									
Drakensteinberge	No data									
Groot Winterhoek	No data									
Piketberg	No data									
Chambres Numbers	15 (Peninsula Aquifer)									
Steenbras-Nuweberg	16 (Nardouw Aquifer)									
Vöelvlei-Slanghoek	No data									
Wemmeshoek	4									
Witsenberg	No data									
Fractured and Intergranu	ılar Basement Aquifers									
Cape Town Rim	21									
Darling	9									
Eendekuil Basin	10									
Malmesbury	66									
Middle-Lower Berg	46									
Northern Swartland	31									
Paarl-Franschhoek	1									
	13 (Cape Granite Suite)									
Stellenbosch-Helderberg	6 (Tygerberg Formation)									
Tulbagh	1									
Vredenberg	No data									
Wellington	3									

4.5.2. Assigning Resource Units

Unfortunately, no borehole construction information and geological logs were available for the WMS data. Thus, RUs could be established for all GRUs except for Steenbras-Nuweberg, where monitoring data was available to assign two RUs: Peninsula Aquifer and Nardouw Aquifer. For all other GRUs, surface geology was assigned to monitoring locations to establish RUs.

4.5.3. Baseline Water Quality

Edmunds and Shand (2008) describe the baseline concentration of a substance as the range of concentrations derived entirely from natural, geological, biological or atmospheric sources, under conditions not impacted by anthropogenic activity. In the study area, given the wide ranges of anthropogenic activities, particularly farming in the greater Berg area and industrial activities in urban aquifers like the CFA, true baselines concentrations cannot be determined conclusively. However, the baseline can be approximated from representative monitoring locations within areas with limited anthropogenic activity.

To establish the baseline concentrations, the 95th percentile for a parameter, using data from a representative borehole per GRU, was calculated and applied as a threshold concentration against which all other data were compared. Instead of using maximum concentrations, the 95th percentile statistical method was chosen as it accounts for most of the data but excludes outliers that can skew analyses. Representative sites as well as descriptions of the datasets and rationale for their selection are presented in **Table 4-12**. Overall, the selection was based on the following factors:

- Distance from potentially contaminating activities (PCAs). The ideal borehole is to be located in an area as far from PCAs as reasonably possible.
- Length of data record. A longer record can span multiple seasons and will account for seasonal differences.
- Spatial centrality within GRU. Depending on the location of recharge and discharge areas, a central borehole will represent groundwater that has had some residence time in the aquifer, with appreciable rock-water interaction, but prior to discharge.

For the Stellenbosch-Helderberg GRU, 2 representative boreholes have been selected due to the extensive nature of both the Tygerberg Formation and Cape Granites, lithologies with distinct impacts on the water quality.

Table 4-12Selection of boreholes representing the natural groundwater quality per GRU and
rationale behind selection of each borehole (BH). The Stellenbosch-Helderberg GRU
consists of two representative boreholes due to the predominance of both the
Tygerberg and Cape Granite Suite formations across the GRU.

Groundwater Resource Unit	Representative Borehole	Rationale for borehole selection								
Primary / Intergranular Aquifers										
Adamboerskraal	93313	1 of 3 BHs, central, only 4 samples								
Atlantis	91738	Limited anthropogenic impact, long record								
Cape Flats	88847	Long record. All BHs prone to anthropogenic contamination								
Elandsfontein	93871	1 of 3 BHs, longest record and drilled in most extensive geological unit. May have some influence from farming								
Langebaan Road	93873	Long record with greatest distance from PCAs								
Yzerfontein	89820	Central, long record, limited anthropogenic impact								
	Fractured Table Mountain Group Aquifers									
Cape Peninsula	96073	On representative geology, all BHs have 1 sample								
Drakensteinberge	No data	-								
Groot Winterhoek	No data	-								
Piketberg	No data	-								
	H8A1 (Peninsula Aquifer)	Long record								
Steenbras-Nuweberg	H1A3b (Nardouw Aquifer)	Long record								
Vöelvlei-Slanghoek	No data	-								
Wemmeshoek	W7D1	Central								
Witsenberg	No data	-								
	Fractured and Interg	ranular Basement Aquifers								
Cape Town Rim	96211	Central. Located on farmland, all BHs have 1 sample								
Darling	94570	Central. All BHs located on farmland and have 1 sample								
Eendekuil Basin	96167	Central. All BHs located on farmland and have 1 sample								
Malmesbury	89665	Central. Most BHs located on farmland								
Middle-Lower Berg	96095	Central. All BHs located on farmland and have 1 sample. Exception is 90113 adjacent to what appears to be a livestock farm								
Northern Swartland	96144	Central, limited anthropogenic impact. All BHs located on farmland and have 1 sample								
Paarl-Franschhoek	96019	Only BH in GRU								
Stellenbosch-Helderberg	96029 (Tygerberg Formation)	Long record								
	96033 (Cape Granite Suite)	Long record, central								
Tulbagh	89812	Only BH in GRU								
Vredenberg	No data	-								
Wellington	96016	1 of 3 sites, each with 1 sample, on most prevalent geological unit								

The WMS dataset consists of 35 unique parameters, including major ions, physical parameters, nutrients and dissolved metals, from samples collected between 1978 and 2021. Only 14 parameters were selected for detailed analysis based on the following rationale:

Physical parameters: El	lectrical conductivity (EC) and pH – EC is an essential, general water quality parameter which indicates the salinity of groundwater. pH is an indicator of how acidic or basic groundwater is and can determine the solubility and therefore toxicity of metals or corrosivity of water to infrastructure.
Nutrients:	Ammonia, Nitrate + Nitrite and Orthophosphate – nutrients are mostly the result of anthropogenic impacts and can indicate contamination from agriculture (a prevalent activity in the study area) and sewage.
Dissolved metals:	Aluminium, arsenic, chromium, iron, lead, manganese, mercury – although many more metals than analysed can be toxic if consumed by humans, the listed metals have been chosen based on a combination of toxicity, common occurrence and elevated concentrations observed from routine monitoring undertaken by the City of Cape Town (CoCT, 2020a; CoCT, 2021c; CoCT, 2021d)
Sulphate & Fluoride:	Sulphate can be an indicator of seawater intrusion and contamination from agriculture and manufacturing industries, with excess concentrations having adverse human health impacts. Excess fluoride has adverse human health impacts.

Table 4-13 shows the number of samples exceeding baseline threshold concentrations, per parameter, per GRU. Baseline threshold values are presented in **APPENDIX D: Water Quality**. Overall, limited data was available for dissolved metals in the WMS dataset. Therefore, baseline concentrations for these parameters could not be established for most GRUs.

Primary/Intergranular Aquifers

Primary aquifers in the study area consist of various formations of the Sandveld Group, and natural groundwater has moderate salinity levels (relative to TMG and Basement aquifers), slightly acidic to slightly basic pH, moderate to high hardness (due to calcium dissolution), low fluoride and moderate levels of iron and manganese (relative to TMG).

For all GRUs of this aquifer type, many samples exceeded the baseline concentrations for all investigated parameters, with the exception of nutrients in Adamboerskraal and Elandsfontein. However, this is also a function of a limited dataset, with only 4 and 5 samples collected from these GRUs, respectively. The largest number of samples and exceedances were recorded in the Cape Flats Aquifer, including dissolved metals, and over 50% of samples exceeding the sulphate baseline. Urbanisation in the Cape Flats has led to deterioration in the natural water quality of the CFA due to exposure to multiple PCAs, including agriculture, wastewater treatment works and a variety of industries.

In Adamboerskraal, the high number of exceedances and elevated sulphate (52.5 – 1125.9 mg/l) and EC (499.1 – 4548 mS/m) suggests that boreholes within this GRU penetrate the basement (Tygerberg Formation) aquifer, where high salinity levels are expected. With limited spatial hydrochemical data and in the absence of geological logs and water level data from this GRU, the available hydrochemical data leads to potentially erroneous conclusions about the present water quality status of Adamboerskraal if the GRU is classified as a primary aquifer.

Fractured Table Mountain Group Aquifers

Natural groundwater in the TMGA is pristine with low salinity levels, slightly to highly acidic pH, low fluoride, low nutrients and moderate to high levels of iron and manganese.

Exceedances of the threshold baseline concentrations are observed across all GRUs, with 50% of samples exceeding the sulphate and EC baselines in the Cape Peninsula and Steenbras-Nuweberg, as well as nitrate + nitrite baseline in the Cape Peninsula. The Steenbras-Nuweberg and Wemmershoek samples were collected from areas of high elevation, with limited anthropogenic impact, as well as samples from 4 locations in the Cape Peninsula. Therefore, almost all the data collected from these GRUs is representative of variations in natural groundwater conditions. Exceedances for ammonia, nitrate + nitrite in the Cape Peninsula may also be due to contamination in the low-lying urban and residential areas of Fish Hoek, Sunnydale, Noordhoek and Kommetjie, while alkaline pH values in Wemmershoek and Steenbras-Nuweberg can be attributed to the influence of drilling fluids during exploration drilling.

The Steenbras-Nuweberg GRU consists of the Nardouw and Peninsula Aquifer resource units. The lower number of exceedances in the Nardouw compared to Peninsula suggests that concentrations of unique parameters from different samples have a lower range and do not vary widely from each other, while more variation is observed in the Peninsula Aquifer. Although low in both aquifers, the slightly higher EC (2.4 - 38 mS/m) in the Peninsula Aquifer may be the result of influence from the overlying Cederberg Formation, where exploratory core holes are uncased through the formation, while the higher but still acidic pH (4.9 - 9.3) is the result of some buffering from basic ions Ca and HCO₃. In the Nardouw Aquifer, EC and pH are lower (2 - 24.2 mS/m and 4.6 - 8.6, respectively) with the more acidic pH being the result of dissolution of humic compounds from overlying plants, dissolution of CO₂ (which forms carbonic acid) in recharge water and limited presence of basic ions (compared to Peninsula Aquifer) to buffer acidic waters.

Fractured and Intergranular Aquifers

Basement aquifers of the study area are hosted within the Tygerberg Formation and Cape Granite Suite. Natural groundwater has moderate to high salinity levels, neutral pH and moderate to high fluoride concentrations in some areas.

Exceedances of the threshold baseline concentrations are observed across all GRUs, with 50% of samples exceeding baselines for different parameters in all GRUs, particularly pH and fluoride. Exceedances of sulphate, ammonia and nitrate + nitrite are likely due to the use of fertilizers in the study area, where there is extensive agricultural activity. The relatively high number of exceedances suggests a large variation in parameter concentrations within individual GRUs, many of which can also be attributed to naturally elevated concentrations, particularly major ions and EC.

 Table 4-13
 Number of exceedances of baseline concentrations per GRU. Dashes indicate GRUs where no exceedance of the baseline concentration was recorded or where no baseline was able to be calculated due to lack of data. Red highlighted cells indicate parameters where at least 50% of samples exceeded the baseline concentration.

GRU	Repres- entative Borehole	Number of samples	Sulphate (mg/l)	EC (mS/m)	pН	Ammonia (mg/l)	Nitrate + nitrite (mg/l)	Fluoride (mg/l)	Ortho- phosphate (mg/l)	Dissolved Aluminium (mg/l)	Dissolved Arsenic (mg/l)	Dissolved Chromium (mg/l)	Dissolved Iron (mg/l)	Dissolved Lead (mg/l)	Dissolved Manganese (mg/l)	Dissolved Mercury mg/l)
									Numb	per of Exceed	lances					
Primary / Intergranular Aquifers																
Adamboerskraal	93313	4	3	3	1	1	-	1	-	-	-	-	-	-	-	-
Atlantis	91733	46	19	16	14	1	17	2	7	-	-	-	-	-	-	-
Cape Flats	88847	588	302	22	20	248	46	35	86	1	4	13	21	24	66	5
Elandsfontein	93871	5	1	1	1	-	-	1	1	-	-	-	-	-	-	-
Langebaan Road	93873	139	54	52	8	1	42	46	33	-	-	-	1	-	-	-
Yzerfontein	89820	144	4	58	3	22	12	6	75	-	-	-	-	-	-	-
Fractured Table Mountain Group Aquifers																
Cape Peninsula	96073	11	10	10	6	3	8	1	1	-	-	-	-	-	-	-
Steenbras-Nuweberg (Peninsula)	H8A1	61	47	34	26	23	1	22	3	3	-	-	1	-	12	-
Steenbras-Nuweberg (Nardouw)	H1A3b	56	3	11	10	1	3	-	-	4	1	-	9	1	8	-
Wemmershoek	W7D1	31	4	11	5	1	1	1	3	1	-	1	1	-	-	-
							Fractu	ured and Ir	ntergranular I	Basement Aq	uifers					
Cape Town Rim	96211	21	18	6	3	2	7	18	10	-	-	-	-	-	-	-
Darling	94570	9	4	6	7	2	4	7	2	-	-	-	-	-	-	-
Eendekuil Basin	96167	10	7	6	4	1	5	5	1	-	-	-	-	-	-	-
Malmesbury	89665	320	19	6	166	18	5	126	17	23	48	16	36	61	5	-
Middle-Lower Berg	96095	61	9	10	36	33	10	34	49	-	-	-	-	-	-	-
Northern Swartland	96144	31	15	7	19	10	18	13	15	-	-	-	-	-	-	-
Paarl-Franschhoek	96019	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stellenbosch-Helderberg (Tygerberg)	96029	6	5	4	2	4	5	1	4	-	-	-	-	-	-	-
Stellenbosch-Helderberg (Cape Granite Suite)	96033	13	4	3	6	10	9	2	12	-	-	-	-	-	-	-
Tulbagh	89812	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Wellington	96016	3	-	-	-	1	-	-	1	-	-	-	-	-	-	-

Piper diagrams in **Figure 4-6** show the distribution of water types in the Berg catchment. Water types are determined by the distribution of major ions, sodium + potassium (Na + K), calcium (Ca), magnesium (Mg), sulphate (SO₄), chloride (Cl) and bicarbonate + carbonate (HCO₃ + CO₃ - alkalinity).

Primary/Intergranular Aquifers

Primary aquifers consist primarily of Na-CI type waters, with mixed Ca-Mg-CI and Ca-HCO₃ type water in the Atlantis and Cape Flats GRUs. Na-CI type waters are due to the deposition of marine aerosols and recharge by coastal rainfall, which has a typical Na-CI signature. Where boreholes are located near shallow basement rocks of the Tygerberg Formation, the elevated Na and CI ion concentration of this lithology can also impart the Na-CI character to groundwater in the overlying primary aquifer. In the CFA, the Na-CI character has also been attributed to irrigation return flow in the Philippi Horticultural Area (PHA) and infiltration of surface waters (dams) that have undergone salinization due to evaporation (CoCT, 2020a). Irrigation return flow across the extensive farmlands of the Berg can also be attributed as the source of the Na-CI type waters.

In Atlantis and the Cape Flats, Ca-HCO₃ type waters are due to the dissolution of calcium carbonate minerals from calcareous sands of the Witzands Formation and shelly material of the Varswater Formation while Ca-Mg-Cl type waters are due Na⁺ cation exchange between Na-Cl type waters and Ca²⁺ and Mg²⁺ ions in the lithology.

Fractured Table Mountain Group Aquifers

TMGA consist primarily of Na-Cl type waters as a result of the deposition of marine aerosols and recharge by coastal rainfall. Ca-HCO₃ and Ca-Na-HCO₃ are also present in the Peninsula Aquifer of the Wemmershoek GRU, as well as Ca-Mg-Cl in the Steenbras-Nuweberg GRU. Although the Peninsula Formation consists primarily of quartzitic sandstones, due to the relatively high solubility of carbonate minerals, their dissolution often dominates chemical evolution of natural waters, even if these minerals are available in only small amounts. Thus, the presence of marine minerals can be expected in the Peninsula Formation, due to deposition in a clastic marginal marine setting, leading to Ca-HCO₃, while Ca-Na-HCO₃ type waters are due to ion exchange between Ca⁺ ions from Ca-HCO₃ waters and Na⁺ ions in the lithology. In the Nardouw Aquifer, concentrations of Ca and HCO₃ ions are lower than in the Peninsula, hence fewer samples indicating a Ca-HCO₃ water type.

Fractured and Intergranular Basement Aquifers

Basement aquifers consist primarily of Na-CI type waters across all GRUs due to the elevated concentrations of Na and CI ions relative to the other major ions, likely as a result of increased groundwater residence time in the relatively low transmissivity granitic and clay rich shale and siltstone basement aquifers causing the dissolution of salts. Few samples also show mixed Ca-Mg-CI character in the Eendekuil Basin, Northern Swartland, Malmesbury and Stellenbosch-Helderberg GRUs. Although limited, this suggests that there is some Na⁺ cation exchange between Na-CI type waters and Ca²⁺ and Mg²⁺ ions in the lithology.

Figure 4-6 Piper plots showing the distribution of water types across the Berg catchment. All GRUs consist predominantly of Na-Cl type waters. Other water types include mixed Ca-Mg-Cl, Ca-HCO₃ and Ca-Na-HCO₃ types.

4.5.4. Resource Quality Objectives

DWS (2019b:121) outlines RQOs for groundwater in the Berg catchment. These RQOs are specific goals related to groundwater quality management of groundwater reserves and are established according to drainage region. **Table 4-14** summarises parameters exceeding RQOs for a given drainage region and GRU. Only 12 out of the 25 GRUs fall within a drainage region with established groundwater quality related RQOs.

It must be noted that RQOs have only been established for nitrate (NO₃). However, WMS data only includes combined NO₃ and NO₂, and this has been used as a proxy. Extensive monitoring by CoCT in the Atlantis, Cape Flats and TMG Aquifers, has shown that NO₃ almost always makes up the largest or whole proportion of the NO₃ and NO₂ sum.

Primary/Intergranular Aquifers

The Atlantis and Cape Flats GRU results indicate exceedance of RQOs for all parameters, except for $NO_3 + NO_2$ in Atlantis. CoCT monitoring data from the Atlantis indicates that 17% of (435) samples collected between 2018 and 2021 exceed the 0 counts/100 ml RQO for *E. Coli* and 64.8% of samples exceed the <10 counts/100 ml RQO for total coliforms. In the Cape Flats, CoCT monitoring data indicates that 13.7% of (830) samples collected between 2018 and 2021 exceed the 0 counts/100 ml RQO for *E. Coli* and 70.6% of samples exceed the <10 counts/100 ml RQO for total coliforms. *E. Coli* counts may be due to the application of manure in farming areas of the CFA, as well as contamination from wastewater treatment works and poor sanitation infrastructure in both GRUs.

In the Cape Flats, elevated $NO_3 + NO_2$ concentrations are the result of multiple contaminating activities including agriculture (use of fertilizers), wastewater treatment works, infiltration of nutrient rich surface waters and cemeteries (CoCT, 2020a). Acidic waters in the Cape Flats, Atlantis and Langebaan Road GRUs (below RQO thresholds) may be due to the leaching of basic ions from soils and dissolution of humic compounds from overlying vegetation. In Langebaan Road, exceedance of the EC RQO is likely the result of naturally elevated EC due to the underlying Tygerberg Formation basement lithology.

Overall, given the large number of samples, the exceedance count of 0.3 - 17.4% of samples indicates that groundwater quality in these GRUs typically meets RQOs. Only 1 sample exceeds the RQO threshold for EC in Adamboerskraal, while all samples from the Elandsfontein GRU meet RQOs.

Fractured Table Mountain Group Aquifers

No RQOs have been established for TMG Aquifers. For the G22D drainage region, within which the Cape Peninsula falls, RQOs are established only for primary and basement aquifers.

Fractured and Intergranular Basement Aquifers

The Middle-Lower Berg and Malmesbury GRU results indicate exceedance of RQOs for all parameters, while Northern Swartland GRU exceeds RQOs for EC, pH and $NO_3 + NO_2$ and exceedances for pH in the Eendekuil Basin GRU. $NO_3 + NO_2$ exceedances are likely the result of fertilizer use in farming while elevated EC can be attributed to natural variation due to the Tygerberg Formation lithology. In Middle-Lower Berg GRU, pH exceedances are predominantly above the 8.1 upper limit and may be due to the elevated Ca, Mg and HCO₃, relative to other GRUs. In the Darling GRU, only 1 exceedance for EC was recorded. Overall, the exceedance count is 0.7 - 26% of samples collected, except for Eendekuil Basin where only 4 samples were collected, 50% of which exceed the pH RQO.

Table 4-14Number of exceedances of Resource Quality of Objectives (RQOs) per drainage region.
Dashes indicate for which no exceedance was recorded.

Drainage Region	GRU	Parameter RQO		Number of samples	Exceedance Count
G10E	Tulbagh	No RQOs est	ablished except for	total coliforms an	d <i>E. Coli</i>
C101		EC (mS/m)	875		-
	Eendekuil Basin	рН	5.2-8.1	4	2
		NO ₃ + NO ₂ (mg/l)	11		-
GIUJ		EC (mS/m)	875		4
	Middle-Lower Berg	рН	5.2-8.1	46	12
		NO ₃ + NO ₂ (mg/l)	11		3
		EC (mS/m)	899		1
	Darling	рН	6.7-8.3	0	-
	Danning	NO ₃ + NO ₂ (mg/l)	11	9	-
		PO ₄ mg/l)	0.3		-
		EC (mS/m)	899		5
C101	Northern Swortland	рН	6.7-8.3	24	1
GIUL	Northern Swartland	NO ₃ + NO ₂ (mg/l)	11	51	3
		PO ₄ mg/l)	0.3		-
		EC (mS/m)	520		-
	Flondofontoin	pH	6.7-8.3		-
	Elandsfontein	$NO_3 + NO_2 (mg/l)$	0.2	4	-
		PO ₄ (mg/l)	0.3		-
		EC (mS/m)	520		1
	Adamboerskraal	pH	7.1 - 8.4	2	-
		$NO_3 + NO_2 (mg/l)$	11	2	-
		PO ₄	4 0.3		-
		EC (mS/m)	520		-
C10M	Flondofontoin	pH	7.1 - 8.4	4	-
GTUW	Elanusionitein	$NO_3 + NO_2 (mg/l)$	11	, i	-
		PO ₄ (mg/l)	0.3		-
		EC (mS/m)	520		9
	Longohoon Bood	рН	7.1 - 8.4	102	18
	Langebaan Kuau	NO ₃ + NO ₂ (mg/l)	11	103	1
		PO ₄ mg/l)	0.3		-
		EC (mS/m)	287		3
G21B	Atlantis	pН	6.7 - 8.3	39	4
		NO ₃ + NO ₂ (mg/l)	2.3		-
		EC mS/m)	617		5
G21D	Malmesbury	рН	6.3-8.6	141	1
		NO ₃ + NO ₂ (mg/l)	6.4		34
		EC (mS/m)	953		-
G22C, D, E	Cape Town Rim	рН	-	19	-
		$NO_3 + NO_2 (mg/l)$	11		-
		EC (mS/m)	180		2
0220	Cape Flats	pH	6.6 - 8.4	581	14
GZZD		NO ₃ + NO ₂ (mg/l)	9.2	1	40
	Cape Peninsula	No R	QOs established fo	r fractured TMGA	

4.5.5. Water Quality Categories

Using WMS and CoCT data, water quality categories have been determined for each GRU based on the percentage exceedance of baseline threshold value per parameter and per GRU. Adjusted water quality categories have also been established taking into consideration that natural variation in water quality may lead to elevated parameter concentrations in some GRUs (i.e., not the result of anthropogenic contamination) and that extensive spatial monitoring may mask localised contamination when water quality patterns are averaged across a GRU. Six categories adapted after WRC (2007) have been established and are described in **Table 4-15**.

WRC (2007) recommends the use of a site-specific assessment using the DRASTIC approach to map aquifer vulnerability. However, in the absence of vulnerability mapping undertaken for this study, the formula below was applied to obtain a water quality category for each GRU (presented in **Table 4-16**):

Total number of exceedances per GRU

 $\frac{1}{Number of samples per GRU \times Number of parameters analysed per sample} \times 100$

Table 4-15Guide for determining groundwater contamination / groundwater quality Present Status
Category of a GRU. Adapted after WRC (2007).

Water Quality (Present Status) Category	Percentage exceedance	Description	Guide
А	<16.7 %	Unmodified, pristine conditions	Natural groundwater quality conditions prevail
В	16.7 – 33.4 %	Localised, low levels of contamination, but no negative impacts apparent	Largly natural groundwater quality conditions prevail
С	33.4 – 50.1 %	Moderate levels of localised contamination, but little or no negative impacts apparent	Some localised contamination detected; may impact the purpose for which groundwater is used
D	50.1 – 66.8 %	Moderate levels of widespread contamination, which limit the use of potential use of the aquifer	Groundwater contamination is quite widespread but levels are relitavly low; may impact the purpose for which groundwater is used
E	66.8 – 83.5 %	High levels of local contamination which render parts of the aquifer unusable	High levels of contamination detected in places; use of groundwater from impacted area to be restricted or prohibited
F	>83.5 %	High levels of widespread contamination which render the aquifer unusable	Very high levels of contamination widspread thoughout the aquifer. Groundwater use to be restricted or prohibited

Primary/Intergranular Aquifers

The majority of parameter concentrations in these GRUs fall under Category A and B. Parameters falling under Category D are observed in the Cape Flats (sulphate) and Yzerfontein (orthophosphate), while parameters falling under Category E are observed in Adamboerskraal (sulphate and EC). The overall water quality categories for all GRUs are A, B and C. A large discrepancy is observed between the GRU water quality category (A) and adjusted water quality category (D) in the Cape Flats Aquifer, due to the well-documented contaminated status of the CFA. Overall, the adjusted water quality categories of primary/intergranular aquifers indicates that the groundwater quality ranges from pristine to moderately contaminated.

Fractured Table Mountain Group Aquifers

The majority of parameter concentrations in these GRUs fall under Category A. Parameters falling under Category C are observed in Steenbras-Nuweberg (pH, ammonia, fluoride) and Wemmershoek (EC), while parameters falling under Category D and E are observed in the Cape Peninsula (pH and $NO_2 + NO_3$, respectively). Parameters falling under Category F are observed in the Cape Peninsula (sulphate and EC). However, it must be noted that TMG aquifers consist of pristine groundwater and that even samples exceeding baseline concentrations are still representative of pristine conditions, despite naturally elevated iron and manganese and naturally low pH, which are a water quality concern. Due to these parameters of concern, the adjusted water quality category for Steenbras-Nuweberg is B and the adjusted category is A for Wemmershoek. These categories indicate that on average, groundwater quality in the TMGA is pristine.

Fractured and Intergranular Basement Aquifers

The majority of parameter concentrations in these GRUs fall under Category A, followed by Category B, C and D. Overall, the higher occurrence of parameters under Category C and D (relative to other aquifer types) indicates that groundwater within these GRUs has undergone moderate to high localised and widespread contamination. However, it must be noted that for parameters such as EC and sulphate, the high exceedance percentage and categories indicating poorer quality water can be attributed to naturally high concentrations in the Tygerberg Formation lithology. Taking natural variation into consideration, the adjusted water quality Category is B for Malmesbury and Wellington and Category C for all other GRUs, indicating that on average, the groundwater quality in fractured and intergranular basement aquifers represents largely natural to moderately contaminated conditions.

Table 4-16

Derived water quality categories per parameter per GRU, based on percentage exceedance of baseline threshold concentrations. Dashes indicate parameters for which categories could not be established due to lack of data for a given parameter. For the Paarl-Franschhoek and Tulbagh GRU, categories have not been established because there is data from only one borehole in these GRUs, thus exceedance of baseline concentrations cannot be calculated.

GRU	Sulphate (mg/l)	Electrical conductivity (mS/m)	рН	Ammonia (mg/l)	Nitrate + nitrite (mg/l)	Fluoride (mg/l)	Orthophosphate (mg/l)	Dissolved Aluminium (mg/l)	Dissolved Arsenic (mg/l)	Dissolved Chromium (mg/l)	Dissolved Iron (mg/l)	Dissolved Lead (mg/l)	Dissolved Manganese (mg/l)	Dissolved Mercury (mg/l)	GRU Water Quality Category	Adjusted Water Quality Category
							Percentage exce	edance								
							Primary / Intergranul	lar Aquifers								
Adamboerskraal	75.0	75.0	25.0	25.0	-	25.0	-	-	-	-	-	-	-	-	С	В
Atlantis	41.3	34.8	30.4	2.2	37.0	4.3	15.2	-	-	-	-	-	-	-	В	С
Cape Flats	51.4	3.7	3.4	42.2	7.8	6.0	14.6	0.2	0.7	2.2	3.6	4.1	11.2	0.9	А	D
Elandsfontein	20.0	20.0	20.0	0.0	0.0	20.0	20.0	-	-	-	-	-	-	-	А	В
Langebaan Road	38.8	37.4	5.8	0.7	30.2	33.1	23.7	-	-	-	0.7	-	-	-	В	В
Yzerfontein	2.8	40.3	2.1	15.3	8.3	4.2	52.1	-	-	-	-	-	-	-	В	А
						Frac	tured Table Mountain	Group Aquifers	5							
Cape Peninsula	90.9	90.9	54.5	27.3	72.7	9.1	9.1	-	-	-	-	-	-	-	D	В
Steenbras-Nuweberg (Peninsula)	77.0	55.7	42.6	37.7	1.6	36.1	4.9	4.9	-	-	1.6	-	19.7	-	В	В
Steenbras-Nuweberg (Nardouw)	5.4	19.6	17.9	1.8	5.4	-	-	7.1	1.8	-	16.1	1.8	14.3	-	А	В
Wemmershoek	12.9	35.5	16.1	3.2	3.2	3.2	9.7	3.2	-	3.2	3.2	-	-	-	А	А
						Fractur	ed and Intergranular	Basement Aqui	iers		•					
Cape Town Rim	85.7	28.6	14.3	9.5	33.3	85.7	47.6	-	-	-	-	-	-	-	С	С
Darling	44.4	66.7	77.8	22.2	44.4	77.8	22.2	-	-	-	-	-	-	-	D	С
Eendekuil Basin	70.0	60.0	40.0	10.0	50.0	50.0	10.0	-	-	-	-	-	-	-	С	С
Malmesbury	5.9	1.9	51.9	5.6	1.6	39.4	5.3	7.2	15.0	5.0	11.3	19.1	1.6	-	А	В
Middle-Lower Berg	14.8	16.4	59.0	54.1	16.4	55.7	80.3	-	-	-	-	-	-	-	С	С
Northern Swartland	48.4	22.6	61.3	32.3	58.1	41.9	48.4	-	-	-	-	-	-	-	С	С
Paarl-Franschhoek	-	-	-	-	-	-	-	-	-	-	-	-	-	-	N/A	N/A
Stellenbosch- Helderberg (Tygerberg)	83.3	66.7	33.3	66.7	83.3	16.7	66.7	-	-	-	-	-	-	-	D	С
Stellenbosch- Helderberg (Cape Granite Suite)	33.3	25.0	50.0	83.3	75.0	16.7	100.0	-	-	-	-	-	-	-	D	с
Tulbagh	-	-	-	-	-	-	-	-	-	-	-	-	-	-	N/A	N/A
Wellington	-	-	-	33.3	-	-	33.3	-	-	-	-	-	-	-	В	В
								Кеу								
Colour			Categor	у						De	escription					
			А						<16.7 of sam	ples exceed the	baseline concen	tration for a parar	neter			
			В						16.7 – 33.4 of sa	amples exceed t	he baseline conc	entration for a pa	rameter			
			С						33.4 – 50.1 of sa	amples exceed t	he baseline conc	entration for a pa	rameter			
			D						50.1 – 66.8 of sa	amples exceed t	he baseline conc	entration for a pa	rameter			
			E						66.8 – 83.5 of sa	amples exceed t	he baseline conc	entration for a pa	rameter			
			F			>83.5 of samples exceed the baseline concentration for a parameter										

4.5.6. Summary

A summary of water types and water quality categories per GRU is presented in **Table 4-17**. A detailed summary including baseline concentrations, summary statistics, water types and water quality category per parameter, per GRU is presented in **APPENDIX D: Water Quality**. Overall, it is evident that given the lack of data, more monitoring is required in four of the seven TMGA GRUs – Drakensteinberge, Grootwinterhoek, Piketberg and Witsenberg.

Table 4-17Summary of water types and water quality categories per GRU for Primary /
Intergranular Aquifers, Fractured Table Mountain Group Aquifers, and Fractured and
Intergranular Basement Aquifers. *For the Paarl-Franschhoek and Tulbagh GRU,
categories have not been established because there is data from only one borehole in
these GRUs, thus exceedance of baseline concentrations (and therefore categories)
cannot be calculated.

GRU	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category	
Primary / Intergranular Ad	quifers	I			
Adamboerskraal	Na-Cl	B, E	С	В	
Atlantis	Na-Cl, Ca-Mg,Cl, Ca-HCO ₃ , Ca- Na-HCO ₃ , Ca-SO ₄	A, B, C	В	С	
Cape Flats	Na-Cl, Ca-Mg-Cl, Ca-HCO₃, Ca- SO₄	A, C, D	А	D	
Elandsfontein	Na-Cl, Ca-Mg-Cl	А, В	А	В	
Langebaan Road	Na-Cl, Ca-Mg-Cl	A, B, C	В	В	
Yzerfontein	Na-Cl, Ca-Mg-Cl	A, C, D	В	А	
Fractured Table Mountair	Group Aquifers				
Cape Peninsula	Na-Cl, Ca-Mg-Cl, Ca-HCO ₃	A, B, D, E, F	D	В	
Drakensteinberge	No data available	No data available	N/A	N/A	
Grootwinterhoek	erhoek No data available		N/A	N/A	
Steenbras-Nuweberg	eenbras-Nuweberg Na-Cl, Ca-Mg-Cl, Ca-HCO ₃ , Ca- Na-HCO ₃		В	В	
Piketberg	No data available	No data available	N/A	N/A	
Wemmershoek	shoek Na-Cl, Ca-HCO ₃ , Ca-Na-HCO ₃		А	А	
Witsenberg	No data available	No data available	N/A	N/A	
Fractured and Intergranu	lar Basement	-			
Cape Town Rim Na-Cl, Ca-Mg-Cl		A, B, D, E, F	С	С	
Darling	Na-Cl	B, C, D, E	D	С	
Eendekuil Basin	Na-Cl, Ca-Mg-Cl, Ca-SO₄	A, C, D, E	С	С	
Malmesbury	Na-Cl, Ca-Mg-Cl, Ca-SO₄	A, B, C, D	А	В	
Middle-Lower Berg	Na-Cl	A, D, E	С	С	
Northern Swartland	Na-Cl, Ca-Mg-Cl	B, C, D	С	С	
Paarl-Franschhoek	Na-Cl	No data available*	N/A	N/A	
Stellenbosch- Helderberg	Na-Cl, Ca-Mg-Cl	B, C, D, E, F	D	С	
Tulbagh	Na-Cl	No data available*	N/A	N/A	
Vredenberg	No data available	No data available	N/A	N/A	
Wellington	Na-Cl	В	В	В	

4.6. Aquifer Stress

In terms of the overall groundwater Reserve determination process, and in order to correlate the results of this study to existing Water Resource Classes outlined in DWS (2019b: 121), the current ecological reference conditions need to be re-evaluated and the present status of the GRUs re-assessed.

In the context of this study, 'ecological reference conditions' refer to the ambient or natural state of the groundwater system while the 'present status' relates to the current status of the groundwater system. A significant difference between the ecological reference conditions and the present status indicates a degrading state of the groundwater water resource.

The GRDM (WRC, 2007) provides three guidance tables around various groundwater characterisation approaches including 1) sustainable use, 2) level of stress, and 3) contamination / water quality. These are outlined below in terms of their applicability at this stage of the groundwater Reserve determination procedure.

4.6.1. Methodology and Considerations

4.6.1.1. Sustainable Use

In terms of both the Water Resource Classification and the groundwater Reserve determination process, it is assumed that the 'limit' of sustainability is marked by what would be considered 'acceptable' verses 'unacceptable' groundwater use in terms of Reserve requirements (i.e., the quantity and quality of groundwater Reserve required to satisfy the BHN and to protect aquatic ecosystems in different priority water resources within the Berg catchments). This, however, is an outcome of this study and therefore can only be properly assessed once Steps 5 -7 of the groundwater Reserve determination procedure is complete.

4.6.1.2. Level of Stress

Section 8 of the NWA addresses the concept of a 'stressed water resource', and although it is not defined, qualitative examples of 'water stress' are provided in WRC (2007), these include 1) where demands for water are approaching or exceed the available supply, 2) where water quality problems are imminent or already exist, and 3) where water resource quality is under threat.

To provide a quantitative means of assessment for defining aquifer stress, a groundwater Stress Index (SI) has been developed (after WRC, 2007), which considers groundwater water availability verses water use. The Stress Index is defined as follows:

 $SI = \frac{GW Use}{Recharge}$

Where

GW Use = Current groundwater use (M m³/a) Recharge = Recharge (M m³/a)

After calculating the Stress Index, the "Level of Stress" guidance table is used (see **Table 4-18**) to set the groundwater present status category per GRU. A present status summary is presented in **Table 4-19**.

Table 4-18 Guide for determining Present Status Category of a GRU based on the groundwater Stress Index (after WRC, 2007).

Present Status Category	Description	Stress Index (GW use / Recharge)
А		<0.05
В	Unstressed or slightly stressed	0.05 – 0.20
С		0.20 - 0.40
D	Moderatly stressed	0.40 - 0.65
E	Highly stressed	0.65 – 0.95
F	Critically stressed	>0.95

4.6.1.3. Contamination and groundwater quality

In most cases, it's quite apparent when a groundwater resource is being overused or stressed, typically indicated by declining water levels, worsening groundwater quality, and reduced baseflow. Assessing less impacted RUs is sometimes more difficult as the signs of impact are less apparent. This is particularly important when assessing groundwater contamination and the current status of the aquifer in terms of groundwater quality. WRC (2007) provides a guidance table that is used to provide a present status category based on groundwater quality (see **Table 4-15** in **Section 4.5.5**). This has been adapted to include categories based on the percentage exceedance of baseline threshold values for each parameter and per GRU.

After evaluating the groundwater quality in the Berg catchment, the groundwater contamination / groundwater quality guidance table is used (see **Table 4-15**) to set the groundwater quality present status category per GRU and an adjusted category taking into account natural variation in water quality and spatial masking of localised contamination.

4.6.2. Summary

The present status in terms of water availability and groundwater quality is summarised per GRU in **Table 4-19**.

Table 4-19 A summary of the present status category for both groundwater (recharge and use) and groundwater quality for the Berg catchment.

GRU	Recharge Volume (M m³/a)	Groundwater Use (M m³/a)	ndwater Stress Index M m³/a)		Groundwater Quality Present Status Category
		Primary / Intergran	ular Aquifers		
Cape Flats ¹³	55.85	26.60	0.48	D	D
Atlantis ¹⁴	27.85	6.76	0.24	С	С
Yzerfontien	9.20	0.26	0.03	А	А
Elandsfontien	15.47	1.09	0.07	В	В
Langebaan Road	23.28	8.59	0.37	С	В
Adamboerskraal	21.61	2.13	0.10	В	В
	Frac	ctured Table Mounta	in Group Aquifers	;	
Cape Peninsula	10.99	0.07	0.01	В	В
Steenbras- Nuweberg ¹⁵	58.76	9.13	0.16	В	В
Drakensteinberge	27.60	0.05	0.00	А	-
Wemmershoek	26.83	0.81	0.03	А	А
Voëlvlei- Slanghoek	14.10	0.13	0.01	А	-
Witsenberg	2.78	0.08	0.03	А	-
Grootwinterhoek	22.50	1.39	0.06	В	-
Piketberg	20.33	5.58	0.27	С	-
	Fr	actured and Intergra	nular Basement	_	
Cape Town Rim	18.60	6.21	0.33	С	С
Stellenbosch- Helderberg	41.52	8.81	0.21	С	С
Paarl- Franschhoek	26.61	9.82	0.37	С	-
Malmesbury	52.65	14.75	0.28	С	В
Wellington	39.49	4.48	0.11	В	В
Tulbagh	10.87	3.78	0.35	С	-
Eendekuil Basin	21.88	4.85	0.22	С	С
Middle-Lower Berg	42.49	2.23	0.05	В	С
Northern Swartland	31.85	1.79	0.06	В	С
Darling	9.95	0.76	0.08	В	С
Vredenberg	7.43	1.16	0.16	В	-

¹³ City municipal abstraction of 20 M m³/a in development as per NWA Section 21(a) water use licence, with associated Managed Aquifer Recharge (MAR) of 14.6 M m³/a. ¹⁴ City municipal abstraction of 5 M m³/a, with associated Managed Aquifer Recharge (MAR) of 5.11 M m³/a. ¹⁵ City municipal abstraction of 9.13 M m³/a (Phase 1 development), recharge from GRAII – Note, storage is not considered (see CoCT,

²⁰²¹a).

5. Status Quo per GRU

5.1. Primary / Intergranular GRUs

5.1.1. Cape Flats GRU

	GRU Name: Cape Flats
GRU	Main Suburbs: Philippi, Bellville and Kuilsriver
	Total Area (km²): 421.94
GRU Boundary Description	The City of Cape Town's aquifer model boundary (CoCT, 2018 and CoCT, 2020a) was used to define the extent of the Cape Flats GRU (see DWS, 2022d). The aquifer model used a slope separation (<2 degree) of the Cape Flats and the adjacent hills and mountains, as well as an interpolated geological extent of the basement (i.e., the Cape Granite Suite and the Malmesbury Group rocks) on the periphery of the GRU. The GRU is bound by the False Bay coastline in the south.
Quaternary Catchments	G22C, G22D, G22E and G22H
Resource Unit	Primary / Intergranular Aquifer
Description	Geologically, the Cape Flats GRU comprises of the fluvial, marine and acolian Tertiary and Quaternary sedimentary deposits of the Sandveld Group, Mich unconformably overlie weathered Neoproterozoic to ease and Springfontyn formations form the major aquifer units within the larger CPA, which is a large heterogeneous, stratified, intergranular or primary (i.e., porous sedimentary/sandy) aquifer within the Sandveld Group. The primary aquifer thickens to -50 m towards the centre of the GRU and infiliate Elsiesrivier Kuilsrivier Generative and Springfontyn Hormations to mether of the GRU and infiliate elsions of the the basement topography, one of which coincides with the Philippi Horticultural Area (PHA; DWAF, 2008a).

	GRU Name: Cape F	lats						
GRU	Main Suburbs: Phi	lippi, Bellville and I	Kuilsriver					
	Total Area (km ²): 4	21.94						
Surface Water System	Main rivers comprise Rivers and wetlands in the palaeochanne likely to be in hydra GRU are mostly dur	Main rivers comprise of the Kuils, Lotus and Elsieskraal Rivers. Other important surface water bodies include Zandvlei, Zeekoevlei, Rondvlei and the Eerste Estuary. Rivers and wetlands are likely to be hydraulically connected to the relatively shallow groundwater. Where the aquifer is semi-confined (e.g., within the deep gravels n the palaeochannels), or at small local scale, where the aquifer is semi-confined by laterally discontinuous calcrete or clay lenses, rivers and wetlands are only ikely to be in hydraulic connection with the shallow groundwater in the uppermost unconfined sand unit (CoCT, 2021). Various wetlands across the Cape Flats GRU are mostly duneslack wetlands associated with interflow from surrounding dunes and perched aquifer systems.						
	The GRU falls entire RU that fall within ca there are 3 priority b	The GRU falls entirely within the Cape Flats IUA (E12) and has a Water Resource Class III. The GRU has Groundwater Resource Class II for the portions of the U that fall within catchments G22C and G22D. The rest of the GRU has no Groundwater Resource Class. There are also no EWR sites within this IUA, although the are 3 priority biophysical nodes (2 estuary and 1 river node).						
Water Resource Classes & RQOs			Calmesbury Calmesbury Calf	Diep G22C C22C Efith Stevens Cape Flats	C21E Boteland C22E Eerste Estuary	Cape Flats GRU Rivers Hydrotect Faults Vaterbodies Priority Estuaries Quaternary catchment Priority Biophysical Nodes Yes Groundwater Resource Class II III III III III		
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR
			G22D	E12-R15	Keysers	Bvii7	D	93
	E12 Cape Flats	Ш	G22K	E12-E05	Zandvlei	Bxi9	С	93
			G22K	E12-E05	Zeekoevlei	Bxi9	D	N/A

	GRU Name: Cape Flats					
GRU	Main Suburbs: Philippi,	Bellville and Kui	Isriver			
	Total Area (km ²): 421.94					
	An estimated recharge of Intergranular Aquifer. The a MAR volume of <u>14.6 M</u>	41.25 M m ³ /a was average recharge m ³ /a for the CFAN	s acquired from a model-base e rate was calculated to <u>97.76</u> /IS was added to the recharge	d calibra mm/a ba volume	ited recharge (see Section 4.2.3 ; after (ased on the total GRU area. For the Aqu	CoCT, 2018) for the Cape Flats Primary / ifer Stress (Section 4.6.1.2) assessment
Recharge	Method		Area (km²)		Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)
Ű	Model-based calibrated r CoCT, 2018	echarge (after)	421.94		41.25	97.76
	First-order recharge calcute the model calibration con literature.	ulation was done fonsiders both natur	or the GRU (see Section 4.2. al recharge and Irrigation Re	I). The fi turn Flo	irst order recharge estimations differ fro w (IRF). See Section 4.2.3 for additio	m the CoCT (2018) estimations because anal recharge estimations from available
	There are 95 registered g combined groundwater of sectors include Water Su comprises 75.4% and 15 volume per annum (see S farmers likely abstract groundwater use is focus northern portion of the GF Peninsula Mountain ra settlements within the GF	groundwater users use of <u>26.66 M r</u> upply Services and 5.32% respectively Section 4.3.3 for d double the reg seed in the PHA, RU, as well as on t nge (i.e., Southe RU rely on groundw	in the Cape Flats GRU with a $\underline{m^3/a}$. Major groundwater used Agriculture (irrigation), which of the total groundwater used etail). It is however known that gistered volume. Registered with some Industry use in the lower eastern slopes of the ern suburbs). None of the vater as sole supply.	I A I A I A I A I A I A I A I A	Malmesbury Kraaifo Ailnerton Bellville Parow Elsiesrivier Kuilsrivier	Cape Flats Towns GRU GRU GRU GRU GRU Agriculture: Aquaculture Agriculture: Irrigation Agriculture: Watering Livestock Mining Industry (Non-Urban)
	Water Use Sector	No. of Users	Total Volume (M m³/a)		Flats Si C	Industry (Urban) Urban (Excluding Industrial &/Or
Groundwater Use	Agriculture: Irrigation	50	4.08		Stevens Eerst	terivier Domestic) • Recreation
	Agriculture: Watering livestock	2	0.05	2	Khayelitsha MitchellsiPlain	Schedule 1 Water Supply Service Total Registered
	Industry (Non-urban)	2	1.05			Groundwater Use
	Industry (Urban)	31	0.97	\leq	Zeekoevlei	(M m³/a) 0 - 2
	Mining	1	0.39	~	THE AND	2 - 4
	Schedule 1	1	0		A	6 - 8
	Urban (Excluding industrial and/or domestic)	3	0.02		5 km _	8 - 10 10 - 20 20 - 30 30 - 50
	Water Supply Service	5	20.09		1	
	Total	95	26.66	L		

	GRU Name: Cape Flats									
GRU	Main Suburbs: Philippi, Bellville and Kuilsriver									
	Total Area (km ²): 421.94									
	Groundwater's contribution to baseflow was re-calculated using the aquifer specific baseflow estimates from DWAF (2008b) based on equivalent recharge. The total discharge for the Cape Flats GRU is 2.70 M m ³ /a (see Section 4.4.1 for details).									
Discharge	RU Sum of Baseflow per component (M m ³ /a)									
	Primary/Intergranular 2.69 Fractured and Intergranular Basement 0.01									
	Total 2.70									
Water Quality	The main water types in the CFA are Ca-Mg-HCO ₃ and Ca-HCO ₃ type. The Ca-HCO ₃ waters are concentrated in the southern portion of the aquifer due to the influence of the shelly material found along the coastline, which dissolve to release Ca and HCO ₃ ions. The northwest portion of the aquifer in the Philippi area is dominated by sodium-chloride type waters. These areas are associated with high organic rich and clay contents, which may be an influence on the water character. However, it has been previously noted that the irrigation waters used in the PHA have an influence or groundwater salinisation and may also be a source of the A-Cl water types. Of the SB1 samples collected, 2, 14 and 40 exceeded ROOs for EC, pH and MO ₃ + NO ₂ , respectively. There are multiple known contaminating activities in the Cape Flats, thus the adjusted water quality category is D, indicating that there are moderate levels of widespread contamination.									
GRU Name: Cape Flats

GRU

Main Suburbs: Philippi, Bellville and Kuilsriver

Total Area (km²): 421.94

	GRU	Parameter	Baseline concentr ation	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
		Sulphate (mg/l)	44.40	2.00	326.00	52.17	45.4		D		
		Electrical conductivity (mS/m)	113.72	13.00	578.00	87.43	88.85		А		
		рН	8.30	5.07	8.55	7.79	7.84		А		
		Ammonia (mg/l)	0.08	0.02	31.89	0.72	0.059		С		
		Nitrate + nitrite (mg/l)	8.35	0.02	23.20	2.75	1.12		А		
		Fluoride (mg/l)	0.26	0.05	3.05	0.17	0.15		А		
Cape Flats		Orthophosphate (mg/l)	0.03	0.03	1.35	0.03	0.01		А		
	Cape Flats	Dissolved Aluminium (mg/l)	0.500	0.015	1.070	0.499	0.5	Na-Cl, Ca-Mg- Cl, Ca-HCO ₃ , Ca-SO ₄ A A A	A	А	D
		Dissolved Arsenic (mg/l)	0.054	0.002	0.139	0.051	0.05		A		
		Dissolved Chromium (mg/l)	0.003	0.001	0.063	0.004	0.003		A	-	
		Dissolved Iron (mg/l)	2.918	0.006	22.990	1.113	0.65		A		
		Dissolved Lead (mg/l)	0.255	0.002	0.856	0.065	0.025		А		
		Dissolved Manganese (mg/l)	0.007	0.001	0.033	0.005	0.004		А		
		Dissolved Mercury (mg/l)	0.001	0.001	14.013	0.048	0.001		А		
	The GRU is co Present Status	onsidered to have a s of 'D', indicating m	Groundwa noderate le	ter Availability vels of wides	Present Status pread contam	Category of 'I ination, which	D', indicating a Limit the pote	moderately s ential use of th	tressed aqui ne aquifer.	fer, and a Grour	ndwater Quality
Aquifer Stress	Rechar (N	ge Volume I m³/a)	Grou	ındwater Use (M m³/a)		Stress Index	G	roundwater Ava resent Status C	ategory	Groundwater Qu Status Ca	uality Present Itegory
	55.85			26.60		0.48		D		D	

5.1.2. Atlantis GRU

	GRU Name: Atlantis							
GRU	Main Towns: Atlantis and Melkbosstrand							
	Total Area (km ²): 255.68							
GRU Boundary Description	The City of Cape Town's aquifer model boundary (CoCT, 2020b) outlines the extent of the Atlantis GRU (see DWS, 2022b). The aquifer model boundary uses areas with a marginal thickness of 0 m (i.e., where the aquifer pinches out) as the basis of the aquifer extent. The northeast and southeast boundary is then further defined by the outcrop extent of the low permeability basement lithologies (i.e., the Malmesbury Group and the Cape Granite Suite). The Modder and Louwskloof Rivers bound the northern extent of the GRU, with the Sout River bounding the southwest extent, and the coastline boundary the western edge. Preferential flow directions towards the coastline (on the eastern edge of the GRU) were also considered when defining the boundary of the GRU.							
Quaternary Catchments	G21A, G21B and G21D							
Resource Unit	Primary / Intergranular Aquifer							
Description	The Atlantis Aquifer comprises Tertiary to Quaternary aged marine, and aeolian sedimentary deposits of the Sandveld Group. The Sandveld Group in the area unconformably overlies to Neproterozoic to early Cambrian Tygeberg Formation (Malmesbury Group) and Daring Pluton (Cape Granite Suite). In the Atlantis area, the Sandveld Group comprises the Langebaan, Witzand, Springfontyn and Varswater formations. The -40-60 m thick Cenozoic aquifer unit is classified as a primary unconsolidated, intergranular aquifer as groundwater moves turough the pores between sediment. It is mainly classified a unconfined, however, due to the presence of intermittent clay and calcrete lenses in the Springfontyn Formation, semi-confined Suite basement aquifer consists of the Malmesbury Group (Tygeberg Formation shales/phyllites) and plutonic Cape Granite Suite basement rocks. Previously interpolated basement geology (CoCT, 2020b) illustrates a westwards decrease in bedrock elevation form the Atlantis town region to the coast. This decrease in bedrock elevation is parallel to the coast and is expected to influence groundwater fliw. The Malmesbury Group is hypothesised to act as a basal aquiclude to the overlying aquifer. An aspect which is not definitive and may require further investigation is the possibility of interaction between formation and the overlying Sandveld Group.							

	GRU Name: Atlantis									
GRU	Main Towns: Atlantis and	Melkbosstrand								
	Total Area (km ²): 255.68									
Groundwater Use	There are 24 registered growith a combined groundwate Industry (urban) is the major WARMS database that co Although, this is a high va Water Resource Scheme 'Industrial use' instead of Wa the Mining and Agricultural 0.5 M m ³ /a of annual ground It is also important to note Eskom, is not registered in the	undwater users in er use of <u>6.76 M m</u> groundwater use nstitutes 86.8% (Municipal Wate ater Supply Servic Sectors constitute water use each. that the abstraction that the abstraction	the Atlantis GRU 3'a. sector according to of the water use. ssifies the Atlantis er Supply) under the for Atlantis. Both e of approximately on of 1 M m ³ /a by ase.	Atlantis Pella Atlantis						
	Water Use Sector	No. of Users	Total Volume (M m³/a)	Domestic) Recreation Schedule 1						
	Agriculture: Irrigation	9	0.16	Water Supply Service Total Registered						
	Agriculture: Watering livestock	6	0.33	Groundwater Use (M m²/a)						
	Industry (Non-urban)	1	0.04							
	Industry (Urban)	7	5.87							
	Mining	1	0.37	Melkbosstrand						
	Total	24	6.76	20 - 30 20 - 50						
	Groundwater's contribution to The total discharge for the A	o baseflow was re tlantis GRU is <u>0.2</u>	-calculated using the <u>M m³/a</u> (see Sectio	aquifer specific baseflow estimates from DWAF (2008b) based on equivalent recharge. n 4.4.1 for details).						
Discharge		RU		Sum of Baseflow per component (M m³/a)						
Discharge	En stud	Primary/Intergranul	ar	0.20341						
	Fracture	a and Intergranular Total	Basement	0.00013						
				I						

	GRU Name: Atlantis										
GRU	Main Towns	: Atlantis and I	/lelkbosstran	d							
	Total Area (km ²): 255.68										
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
	-	Sulphate (mg/l)	24.70	2.00	355.70	39.01	19.8		C		
		Electrical conductivity (mS/m)	99.74	38.10	1122.70	125.54	92.2		С		
		рН	7.73	2.60	8.35	7.42	7.59		В		
		Ammonia (mg/l)	1.16	0.02	1.22	0.14	0.05	-	A		
		Nitrate + nitrite	0.05	0.02	2.19	0.12	0.02		С		
		Fluoride (mg/l)	1.16	0.05	1.33	0.27	0.16		A		
		Orthophosphate (mg/l)	0.10	-	1.30	0.08	0.022		А		
	Atlantis	Dissolved Aluminium (mg/l)	-	-	-	-	-	Na-Cl, Ca- Mg,Cl, Ca- HCO3, Ca- Na-HCO3, Ca-SO4	-	B	C
		Dissolved Arsenic (mg/l)	-	-	-	-	-		-	В	C
		Dissolved Chromium (mg/l)	-	-	-	-	-		-		
		Dissolved Iron (mg/l)	-	-	-	-	-		-		
		Dissolved Lead (mg/l)	-	-	-	-	-		-		
		Dissolved Manganese (mg/l)	-	-	-	-	-		-		
		Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	The GRU is Quality Pres	considered to ha ent Status Categ	ave a Groundv jory of ' C ' indic	vater Availabili cating modera	ty Present Stat te levels of w i	tus Category o idespread cor	f 'C', indicating ntamination, v	g a moderate vhich limit th	ly stressed le use of pot	aquifer, and a cential use of	Groundwater the aquifer
	Recha (I	arge Volume M m³/a)	Grou	ndwater Use M m³/a)	5	Stress Index	Grou Pres	undwater Avail sent Status Cat	lability G tegory	roundwater Qu Status Ca	ality Present tegory
Aquifer Stress		27.85		6.76		0.24		С		С	

5.1.3. Yzerfontein GRU

	GRU Name: Yzerfontein
GRU	Main Towns: Yzerfontein
	Total Area (km²): 320.33
GRU Boundary Description	The Yzerfontein GRU is bound by the (CoCT 2020) Atlantis aquifer model boundary in the south, as well as the Cape Granite Suite outcrop to the north-east and the Modder River along the south/south-eastern edge. The divide between the Yzerfontein GRU and the Elandsfontein GRU is between the G10M and G21A surface water quaternary catchment and considers the south-westerly preferential flow and discharge direction. The coastline bounds the western edge of the GRU. It is noted that there may be a hydraulic connection between the two aquifers.
Resource Unit	Primary / Intergranular Aquifer
Quaternary Catchments	G21A
Description	This primary aquifer is composed of laterally continuous layers of the Sandveld Group reaching significant thicknesses. Various geophysical prospecting methods were used to estimate aquifer depth due to the difficultly in distinguishing between the unconsolidated deposits and the weathered bedrock materials. However, the thickness is estimated to be – 50 m (Tilmerman, 1985). The basement is composed of the Malmesbury Group, outcropping mainly in areas surrounding the Modder River in the southern portion and in other intermittent outcrops of the GRU. The basement is composed of the Malmesbury Group, outcropping mainly in the areas surrounding the Modder River in the southern portion and in other intermittent outcrops of the GRU.
Surface Water System	The main surface water bodies include the Dwars, Jakkals and Modder rivers. Groundwater may discharge and support minor wetlands in coastal dunes, as well as to the ocean as submarine discharge.

	GRU Name: Yzerfon	tein								
GRU	Main Towns: Yzerfo	ntein								
	Total Area (km ²): 32	0.33								
Water Resource	Total Area (km ²): 32 The GRU falls within is 1 priority biophysic	0.33 the West Coast (A3), al river node with a Tf	has a Water Resource EC of D.	e Class of III and no Contein Darlin Eviii3 G21A	Groundwater Resource	Yzerfontein Yzerfontein GRU Rivers Hydrotect Faults Vaterbodies Priority Estuaries Quaternary catchment Priority Biophysical Nodes Yes Groundwater Resource	o EWR sites within thi	s IUA, although there		
Classes & RQOs			<u>5 km</u>		Atlantis G21B	Class				
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR		
	A3 Wast Coast	Ш	G21A	A3-R01		Bviii3	D	14.6		
Recharge	An estimated recharg as the estimated rech area. Additional recha	An estimated recharge of <u>9.20 M m³/a</u> was acquired from first-order recharge calculations using the Map-Centric Simulation method (see Section 4.2.3), and was selected as the estimated recharge value for the Aquifer Stress (Section 4.6.1.2) assessment. The average recharge rate was calculated to <u>28.72 mm/a</u> based on the total GRU area. Additional recharge estimations are available in literature (See Section 4.2.3).								
Ŭ	Met	hod	Area	(km²)	Recharg (M r	e Volume n³/a)	Average Recharge Rate (mm/a)			
	Map-Centric Sir	nulation method	320	0.33	9.	20	28	.72		

GRU	GRU Name: Yzerfo Main Towns: Yzerf Total Area (km²): 3	RU Name: Yzerfontein Iain Towns: Yzerfontein iotal Area (km²): 320.33								
	There is one registe in the Water Suppl WARMS dataset pl Darling GRU (indica for the Yzerfontein o	ered groundwater us y Scheme Service S aces Yzerfontein's n ated by the red arrow GRU.	er in this GRU using ector (see Section nunicipal abstraction in the figure). It has l	4.3.3 for details). The of 0.26 M m ³ /a in the been updated to reflect	Elandsfontein Yzerfontein Yzerfontein Northern Swartland Yzerfontein O Towns GRU Rivers Water Use Sector O Agriculture: Aquaculture Agriculture: Northern Rivers Usestock Mining Industry (Non-Urban) O Industry (Non-Urban)					
Groundwater Use	RU Primary / Intergranular	Water Use Sector	No. of Users	Total Volume (M m³/a) 0.26	 Darling Industry (Urban) Urban (Excluding Industrial &/Or Domestic) Recreation Schedule 1 Water Supply Service 					
	Aquifers To	ptal	1	0.26	5 km 5 km 5 km					
Discharge	Groundwater's con discharge for this G	tribution to baseflow RU is <u>0.19 M m³/a</u> (: Primary	was re-calculated see Section 4.4.1 fo RU //Intergranular	using the aquifer speci or details).	ic baseflow estimates from DWAF (2008b) based on equivalent recharge. The total Sum of Baseflow per component (M m³/a) 0.18					
Discharge		Fractured and Ir	ntergranular Basement Total	:	0.01 0.19					

	GRU Name: Ya	zerfontein									
GRU	Main Towns: Y	zerfontein									
	Total Area (km	²): 320.33									
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentratio	on Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
		Sulphate (mg/l)	109.04	2.00	277.90	51.61	40.128		A		
		Electrical conductivity (mS/m)	111.70	35.20	588.00	127.01	104.1		С		
		рН	7.97	1.00	8.76	7.21	7.235		А		
		Ammonia (mg/l)	0.11	0.02	1.16	0.08	0.042		А	_	
		Nitrate + nitrite (mg/l)	0.51	0.01	4.18	0.24	0.087		А		
		Fluoride (mg/l)	0.44	0.03	0.88	0.23	0.2	A	А		
	Yzerfontein	Orthophosphate (mg/l)	0.05	-	0.81	0.11	0.058		D		
		Dissolved Aluminium (mg/l)	0.026	0.019	0.026	0.023	0.0225	Na-Cl, Ca-Mg-	-	в	۵
		Dissolved Arsenic (mg/l)	0.061	0.002	0.064	0.033	0.033	CI	-	D	~
		Dissolved Chromium (mg/l)	0.005	0.003	0.005	0.004	0.004		-		
		Dissolved Iron (mg/l)	0.118	0.020	0.123	0.072	0.0715		-		
		Dissolved Lead (mg/l)	0.034	0.002	0.036	0.019	0.019		-		
		Dissolved Manganese (mg/l)	0.001	0.001	0.001	0.001	0.001		-		
		Dissolved Mercury (mg/l)	-	-	-	-	-		-		
Aquifor Stress	The GRU is considered to have a Groundwater Availability Present Status Category of 'A', indicating an unstressed or slightly stressed aquifer, and a Groundwater Availability Present Status Category of 'A' indicating unmodified , pristine conditions .									a Groundwater	
Aquiler Stress	Rechar (M	ge Volume I m³/a)	Gro	undwater Use (M m³/a)		Stress Index		Groundwater Ava Present Status C	ilability ategory	Groundwater Qu Status Ca	ality Present
		9.20		0.26		0.03		А		A	

5.1.4. Elandsfontein GRU

	GRU Name: Elandsfontein							
GRU	Main Towns: None							
	Total Area (km ²): 531.57							
GRU Boundary Description	The Elandsfontein GRU is bound by the extent of the Springfontyn Formation in the east including portions of the Sout River, as well as by an interpolated extent of the Cape Granite Suite outcrop to south. The Yzerfontein and Elandsfontein GRU share the surface water quaternary catchment divide at G10M and G21A, which considers the southwesterly preferential flow direction and discharge. The divide between the Elandsfontein and Langebaan Road GRU is based on an inferred basement high (i.e., Malmesbury Group and Cape Granite Suite) which extends from the eastern edge of the GRU towards the coast. However, it is noted that there might be a hydraulic connection between the Elandsfontein and Langebaan Road aquifers. The coastline bounds the western edge of the GRU.							
Resource	Primary / Intergra	nular Aquifer						
Unit	Upper RU	Lower RU						
Quaternary Catchments	G10M and G10L							
Description	This primary aquifer is composed of laterally continuous layers of the Sandveld Group reaching an average thickness of approximately 70 m. The Sandveld Group includes the Springfontyn Formation (present in the majority of the GRU) which is predominantly covered with Tertiary and Quaternary unconsolidated with semi-consolidated dune sands and calcrete. The basement topography (palaeochannels), faults, fissures, contact zones and the stratigraphy of the Cenozoic deposits all contribute to the complexity of the groundwater recharge, flow and discharge. Nonetheless, the Elandsfontein Aquifer System comprises of a lower and upper sand aquifer separated by clay unit and is situated between Hopefield and Langebaan Lagoon. Palaeo-courses of the Berg River (Timmerman, 1985a, 1985b and 1985c, DWAF, 2008e) have created incisions in the basement topography, which are infilled by fluvial sediment of the Elandsfontyn Formation, within the Sandveld Group, and represent high yielding zones.	Elandsfontein Parker's Town Parker's Town Parker						

	GRU Name: Elandsfe	ontein						
GRU	Main Towns: None							
	Total Area (km ²): 53 ²	1.57						
Surface Water System	Surface water is limite Lagoon, which is the r	d in the region, related main surface water sy	t to low rainfall, subdue stem in the GRU.	ed topography and	d the highly permeable sa	nd-dominated geology	. The aquifer discharg	es into the Langebaan
Water Resource Classes & RQOs	The GRU falls within Water Resource Clas within IUA A2 (catchr Groundwater Resourc G10L). There is 1 pr Lagoon, which has a	the Langebaan (A2) is II and III respective ient G10M) has a Gro ce Class for the portic iority estuary EWR s TEC of A.	and Lower Berg (B4 ely. The portions of th undwater Resource C ons that fall within IUA ite within the GRU –	e) IUAs and has the GRU that fall lass of II, and no A B4 (catchment the Langebaan	Lange Ro Langebaan Estuary	A1 ad CMOM 22 Elandsfontein Lagoon Yzerfontein C21A	Berg River Estuary Estuary G10L S G10L S Gro Gro Gro Res Cla S S Wartland Cla	 Iandsfontein GRU Rivers Hydrotect Faults Waterbodies Priority Estuaries Quaternary catchment ority Biophysical des Yes Yes Soundwater source III III III III III
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR
	A2 Langebaan	Ш	G10M	A2-E04	Langebaan	Bxi3	А	N/A

	GRU Name: Elandsfontein										
GRU	Main Towns: None										
	Total Area (km ²): 531.57										
Recharge	An estimated rechain calculations using the selected as the estimassessment. The ave GRU area. Addition Section 4.2.3).	rge of <u>15.47 M m³/a</u> e Map-Centric Simula mated recharge value erage recharge rate e nal recharge estima	was acquired from tion method (see Sec for the Aquifer Stree quates to <u>29.05 mm</u> ations are available	First-order recharge ction 4.2.3), and was ess (Section 4.6.1.2) <u>/a</u> based on the total in literature (See	A leaky hydraulic connection is presumed to exist between the upper and lower RU. This will be further investigated in Step 4 (i.e., EWR and BHN Reserve determination).						
	Method	Area (km²)	Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)							
	Map-Centric Simulation method	532.57	15.47	29.05							
	There are 3 registere with a combined gro include Mining and respectively of total g	ed groundwater users oundwater use of 0.87 Agriculture (irrigation roundwater use volum	in this Upper Primary 7 <u>M m³/a</u> . Major grou n) which comprise o ne per annum (see Se	Intergranular Aquifer undwater use sectors f 80.5% and 18.3% ction 4.3.3 for detail).	Agriculture (irrigation) is the only groundwater user in the Lower Primary Intergranular Aquifer abstracting a 0.22 M m³/a (see Section 4.3.3 for details).						
	RU	Water Use Sector	No. of Users	Total Volume (M m ³ /a)	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)			
Groundwater Use	Primary /	Agriculture: Irrigation	1	0.16	Primary / Intergranular	Agriculture: Irrigation	1	0.22			
	Aquifers (Upper)	Mining	1	0.01	Total		1	0.22			
	Total	Winning	3	0.87							
			-								

	GRU Name: Elandsfontein	
GRU	Main Towns: None	
	Total Area (km²): 531.57	
	Groundwater's contribution to baseflow is minimal due to discharge to lagoons and the	Elandsfontein Towns GRU Rivers Vater Use Sector • Agriculture: Aquaculture • Agriculture: Watering Livestock • Mining • Industry (Non-Urban) • Industry (Urban) • Industry (Urban) • Obmestic) • Recreation • Water Supply Service Total Registered Groundwater Use Mm*a) 0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 20 20 - 30 30 - 50
	Langebaan Lagoon and this will be further investigated in Step 4 (i.e., EWR and BH)	BHN Reserve determination).
	RU	Sum of Baseflow per component (M m³/a)
Discharge	Primary/Intergranular	0
	Fractured and Intergranular Basement	0.00048
	Ισται	0.00046

	GRU Name: Elandsfontein
GRU	Main Towns: None
	Total Area (km²): 531.57
Water Quality	The main water types in Elandsfortein are Na-Cl and Ca-Mg-Cl types. Na-Cl waters are due to the deposition of marine aerosols and recharge by coastal rainfall, which has a typical Na-Cl signature. Ca-Mg-Cl type vaters are due Na ca class and Mg ² ions in the lithology, primarily from the Langebaan and Witzands formations. The Elandsfortein GRU fails under the G10L and G10M drainage regions. Four samples were collected from G10L and 1 from G10M and all samples meet ROOs. The adjusted water quality catality that all sometimes the constraint of the deposition exist, larget particular constraints of the deposition exist. larget particular constraints of the deposit

	GRU Name: Elandsfontein											
GRU	Main Towns: N	Main Towns: None										
	Total Area (km²): 531.57											
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category	
		Sulphate (mg/l)	12.90	12.10	29.20	15.68	12.1		В			
		Electrical conductivity (mS/m)	49.10	45.50	101.90	58.98	49.1		В			
		рН	7.49	7.17	7.60	7.39	7.35		В			
	Elandsfontein	Ammonia (mg/l)	0.14	0.04	0.14	0.10	0.12		A			
		Nitrate + nitrite (mg/l)	4.62	0.15	4.62	1.65	1.51		А			
		Fluoride (mg/l)	0.24	0.17	0.82	0.32	0.19		В		в	
		Orthophosphate (mg/l)	0.19	0.01	0.30	0.17	0.185		В			
		Dissolved Aluminium (mg/l)	-	-	-	-	-		-	Δ		
		Dissolved Arsenic (mg/l)	-	-	-	-	-		-	~		
		Dissolved Chromium (mg/l)	-	-	-	-	-		-	-		
		Dissolved Iron (mg/l)	-	-	-	-	-		-			
		Dissolved Lead (mg/l)	-	-	-	-	-		-			
		Dissolved Manganese (mg/l)	-	-	-	-	-		-			
		Dissolved Mercury (mg/l)	-	-	-	-	-		-			
Aquifer Stress	The GRU is cor Present Status	nsidered to have Category of 'B' ir	a Groundwater idicating locali e	Availability Pres sed, low levels	sent Status Cate of contaminati	egory of 'B', indic on, but no neg	cating an unst ative impacts	ressed or slightl apparent.	l y stressed aq	uifer, and a Grou	ndwater Quality	
	Rechar (N	ge Volume I m³/a)	Gro	Groundwater Use (M m³/a)		Stress Index		Groundwater Present Status Category (after WRC, 2007)		Adjusted Groundwater Quality		
	1	5.47		1.09		0.07		В		В		

5.1.5. Langebaan Road GRU

	GRU Name: Langebaan Road									
GRU	Main Towns: Langebaan									
	Total Area (km²): 903.71									
GRU Boundary Description	The north-western extent of Langebaan Road GRU is bound by the interpolated extent of the Cape Granite Suite outcrop. The divide between the Elandsfontein and Langebaan Road GRU is based on an inferred basement high (i.e., the Malmesbury Group and the Cape Granite Suite) which extends from the eastern edge of the GRU towards the Saldanha Bay coast. The Berg and Sout rivers bound the eastern and south-eastern edge of the GRU, with the Saldanha Bay and St Helena Bay coastline's bounding the western and northern edge respectively. Preferential flow direction towards Saldanha Bay was also considered when defining the boundary for the GRU.									
Resource Unit	Primary / Intergranular Aquifer									
Resource offic	Upper RU Lower RU									
Quaternary Catchments	G10M and G10L									
Description	The Langebaan region is dominated by semi- to unconsolidated Cenozoic (65 Ma to present) sediments (reaching an average thickness of between ~ 50m - 70m), which unconformably overlie the metamorphosed shales of the Malmesbury Group and granites of the Cape Granite Suite which form the basement. The division between the Langebaan Road Aquifer System and Elandsfontein Aquifer System should simply be considered a spatial one, as the two are in hydraulic connection in both the shallow and deep aquifers (WRC, 2016a). The Berg River flows approximately parallel to and just east of the regional contact between the Malmesbury Group and Cape Granite Suite, and forms the eastern extent boundary of the GRU. The basement topography (palaeochannels), faults, fissures, contact zones and the stratigraphy of the Cenozoic deposits all contribute to the complexity of the groundwater recharge, flow and discharge of the Langebaan Road aquifer system.	Adamboerskraal Velddrif Velddrif Vredenburg Tierkloof De Brug Langebaan De Brug Langebaan Brug Langebaan Codd Hopefield Oudekraalfontein Elandsfontein	Langebaan Road GRU GRU Rivers Hydrotect Faults Tertiary to Recent Cover Other Quaternary Cover Witzand Fm. Langebaan Fm. Velddrif Fm. Springfontyn Fm. Cape Supergroup Bokkeveld Group Rietvlei Fm. Skurweberg Fm. Goudini Fm. Cedarberg Fm. Pakhuis Fm. Peninsula Fm. Piekenierskloof Fm. Basement Klipheuwel Group Cape Granite Suite Malmesbury Group							

	GRU Name: Langebaan Road										
GRU	Main Towns: Lange	baan									
	Total Area (km ²): 90)3.71									
Surface Water System	The Langebaan Roa GRU.	d Aquifer System discha	rges into Saldanha Bay, St	Helena Bay a	and the Berg River/Groc	ot Estuary, which forms the m	ain surface wa	ater system in this			
Water Resource Classes & RQOs	The GRU falls within that fall within IUAs <i>i</i> (catchment G10L). T which has a TEC of 0	the Berg Estuary (A1), L A1 and A2 (catchment G here are 2 priority estuar C.	angebaan (A2), and Lower 10M) have a Groundwater I ies within the GRU, 1) the L Vredenburg Langebaan G10 Road A2 Langebaar Estuary 5 km	Berg (B4) IU, Resource Cla angebaan La Ac A1 Berg RN (Groot Estua M	As and has Water Reso ss of II, and no Ground agoon (an Estuary EWR 30A lamboerskraal er (G10L (G10L) (G10	angebaan Road GRU GRU GRU GRU GRU GRU GRU Faivers Hydrotect Faults Waterbodies Priority Estuaries Quaternary catchment riority Biophysical odes Yes roundwater esource lass III III III III III	ctively. The po e portions that) the Berg Rive	rtions of the GRU fall within IUA B4 er (Groot) Estuary			
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR			
	A1 Berg Estuary	II	G10M	A1-E01	Berg (Groot)	Bxi1	С	52			
	A2 Langebaan	Ш	G10M	A2-E04	Langebaan	Bxi3	А	N/A			

	GRU Name: Langebaan Road											
GRU	Main Towns: Lang	ebaan										
	Total Area (km ²): 903.71											
Recharge	An estimated rechar calculations using the selected as the est assessments. The a GRU area. Addition Section 4.2.3).	rge of <u>23.28 M m³/a van Endersing of 23.28 M m³/a van Endersing of the second sec</u>	vas determined fror ion method (see Se for the Aquifer Stro quates to <u>25.76 mn</u> tions are available	n first-order recharge ction 4.2.3), and was ess (Section 4.6.1.2) <u>n/a</u> based on the total e in literature (see	A leaky bydraulic connection is presumed to exist between the upper and lower RU							
Ū	Method	Area (km²) Recharge Volume (M m³/a)		Average Recharge Rate (mm/a)	This will be further investigated in Step 4 (i.e., EWR and BHN Reserve determin							
	Map-Centric Simulation method	Map-Centric 903.71 23.28										
	There are 16 registe Aquifer with a comb the major groundwa volume per annum (ared groundwater users ined groundwater use of ter user which constitut see Section 4.3.3 for o	in the Upper Prima f <u>0.78 M m³/a</u> . Agrid es 91.0% of the tota letail).	ry / Intergranular culture (irrigation) is al groundwater use	There are 17 registered groundwater users in the Lower Primary / Intergranular Aquifer with a combined groundwater use of $7.82 \text{ Mm}^3/a$. Water Supply services is the major groundwater user which constitutes 87.4% of the total groundwater use volume per annum (see Section 4.3.3 for detail).							
Groundwater	RU	Water Use Sector	No. of Users	Total Volume (M m ³ /a)	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)				
Use		Agriculture: Irrigation	9	0.71		Agriculture:	6	0.87				
	Primary / Intergranular	Agriculture: Watering livestock	2	0.02	Primary / Intergranular	Agriculture:	8	0.08				
	Aquifers (Upper)	Industry (Non-urban)	4	0.01	Aquifers (Lower)	Water Supply						
		Industry (Urban)	1	0.04		Service	3	6.87				
	Total		16	0.78	Тс	otal	17	7.82				

	GRU Name: Langebaan Road									
GRU	Main Towns: Langebaan									
	Total Area (km²): 903.71									
	Vredenburg Vredenburg Tierkloof Parker's Town De Brug Langebaan Oudek Elandsfor	Langebaan Road Towns DRU Rivers Water Use Sector • Agriculture: Irrigation • Agriculture: Watering Livestock • Mining • Industry (Urban) • Industry (Urban) • Industry (Urban) • Urban (Excluding Industrial &/Or Domestic) • Recreation • Schedule 1 • Water Supply Service Total Registered Groundwater Use Mm*/a) • -2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 20 20 - 30 30 - 50								
	Groundwater's contribution to baseflow is minimal / unknown due to discharge to estu- investigated in Step 4 (i.e., EWR and BHN Reserve determination).	aries and the ocean not being included (DWAF 2008b). This will however be further								
Discharge	RU	Sum of Baseflow per component (M m³/a)								
	Primary/Intergranular	0								
	Fractured and Intergranular Basement	0								
	Total	0								

	GRU Name: Langebaan Road
GRU	Main Towns: Langebaan
	Total Area (km²): 903.71
Water Quality	The main water type in Langebaan Road is NA-CI. The Na-CI waters predominantly due to the deposition of marine aerosols and recharge by costalt rainfall, which has a provide an endowed of the Typerberg Formation. The elevated Na and Ci ino concentration of this linkology can also impart the Na-CI character of provide are related in the overlink of the Typerberg Formation. The elevated Na and Ci ino concentration of this linkology can also impart the Na-CI character of the underlying Typerberg Formation. The predominantly basis pH is due to the dissolution of basis Ca and HOOs ions from the extensive, Langebaan Formation. The adjusted water quality category is B, indicating that although some low levels of contamination exist, largely natural groundwater quality conditions prevail.

	GRU Name: Langebaan Road											
GRU	Main Towns: L	.angebaan										
	Total Area (km²): 903.71											
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category	
		Sulphate (mg/l)	25.18	0.60	1149.50	103.48	56.1		C	В		ĺ
		Electrical conductivity (mS/m)	155.60	59.50	2365.20	261.62	166.3		С			
		pH	8.41	6.77	8.75	8.01	8.1		A			
		Ammonia (mg/l)	0.14	-	0.55	0.05	0.025		A			
	Langebaan Road	(mg/l)	0.25	0.02	25.34	1.42	0.1055		В			
		Fluoride (mg/l)	0.70	0.22	2.55	0.86	0.81		В		В	
		Orthophosphate (mg/l)	0.04	0.04	0.24	0.04	0.025		В			
		Dissolved Aluminium (mg/l)	0.091	0.001	0.099	0.035	0.03	Na-Cl, Ca-Mg- Cl	-			
		Dissolved Arsenic (mg/l)	0.085	0.002	0.103	0.035	0.027		-			
		Dissolved Chromium (mg/l)	0.010	0.000	0.021	0.004	0.003		-			
		Dissolved Iron (mg/l)	0.014	0.001	0.031	0.008	0.006		А			
		Dissolved Lead (mg/l)	0.063	0.000	0.063	0.026	0.027		-			
		Dissolved Manganese (mg/l)	0.006	0.001	0.024	0.003	0.001		-			
		Dissolved Mercury (mg/l)	0.029	0.010	0.029	0.020	0.019		-			
	The GRU is con Status Category	nsidered to have y of 'B' indicating	e a Groundwate J localised, low	er Availability Pr / levels of cont	esent Status Ca amination, but	ategory of 'C', ir no negative in	ndicating a mod	lerately stresso nt.	ed aquifer, and	a Groundwater	Quality Present	t
Aquifer Stress	Rechar (M	Recharge Volume (M m³/a)		Groundwater Use (M m³/a)		Stress Index	C F	Groundwater Availability Present Status Category		Groundwater Quality Present Status Category		
	2	23.28		8.59		0.37		С		В		

5.1.6. Adamboerskraal GRU

	GRU Name: Adamboerskraal
GRU	Main Towns: Velddrif
	Total Area (km ²): 612.30
GRU Boundary Description Quaternary	The Adamboerskraal aquifer model boundary (SRK, 2004) was used as the extent of the GRU. The Berg River bounds the south-western edge, with the eastern/southern boundary defined by an interpolated basement lithology extent (i.e., the Malmesbury Group and the Cape Granite Suite overlain by a thin layer of the Springfontyn Formation) as well as the north-westerly preferential flow direction (i.e., at the Berg River Estuary). The St Helena Bay coastline bounds the north/north-western edge of the GRU.
Description	The Adamboerskraal region is dominated by semi- to unconsolidated Cenozoic (65 Ma to present) sediments, -50 – 70 m thick, which unconformably overlie the metamorphosed shales of the Malmesbury Group and granites of the Cape Granite Suite. The Berg River flows approximately parallel to and just west of the regional contact between the Malmesbury Group and Cape Granite Suite. The basement topography (palaeochannels), faults, fissures, contact zones and the stratigraphy of the Cenozoic deposits al contribute to the complexity of the groundwater recharge, flow and discharge.
Surface Water System	The Adamboerskraal Aquiter discharges into St Helena Bay and the Berg River/Groot Estuary, which forms the main surface water system in this GRU. There is likely a hydraulic connection between the Adamboerskraal Aquifer System and the Langebaan Road Aquifer System, beneath the Berg River (WRC, 2016a).

	GRU Name: Adambo	GRU Name: Adamboerskraal									
GRU	Main Towns: Velddri	if									
	Total Area (km ²): 612	2.30									
Water Resource Classes & RQOs	The GRU falls within the Resource Class II and (catchment G10M) ha Resource Class for the (catchment G10K). The (Groot) Estuary, with a	the Berg Estuary (A1) d III respectively. The as a Groundwater Re ie portions that fall wit iere is 1 priority estuar a TEC of C.	and Lower Berg (B4) portion of the GRU th esource Class of II, a hin IUA A1 (catchmer y EWR site within the C	IUAs and has Water hat fall within IUA A1 and no Groundwater ht G30A) and IUA B4 GRU – the Berg River	Adambo Adambo Langebaan Road	Middle- Ber G30A Derskraal A1 G10M Berg River (Groot) Estuary	Lower g G10k Berg	Adamboerskraal			
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR			
	A1 Berg Estuary	Ш	G10M	A1-E01	Berg (Groot)	Bxi1	С	52			
Recharge	An estimated recharge as the estimated recharge recharge estimations	e of <u>21.61 M m³/a</u> was arge value for the Aqui are available in literatu	s determined from first fer Stress (Section 4.6 are (See Section 4.2.3	t-order recharge calcul 5.1.2) assessments. Th 3).	ations using the Map- le average recharge ra	Centric Simulation me te equates to <u>35.29 m</u>	ethod (see Section 4. 2 1 m/a based on the tota	2.3), and was selected I GRU area. Additional			
	Met	hod	Area	(km²)	Recharge (M n	e Volume n³/a)	Average Re (mi	charge Rate n/a)			
	Map-Centric Sir	nulation method	612	2.30	21.	61	35	.29			

	GRU Name: Adamboerskraal								
GRU	Main Towns: Velddrif								
	Total Area (km ²): 612.30								
	There are 12 registered ground <u>2.13 M m³/a</u> . Major groundwate constitute 62.9% and 37.1% re Section 4.3.3 for detail).	dwater users in this GRU or ar use sectors include Agric aspectively of the total grou	with a combined groundwater culture (irrigation) and industry indwater use volume per annu	ater use of stry, which nnum (see Dwarskersbos Middle-Lower Berg Dwarskersbos Adamboerskraal O Towns GRU Ruivers Water Use Sector • Agriculture: Aquaculture • Agriculture: Irrigation • Agriculture: Irrigation • Agriculture: Watering Livestock					
	Water Use Sector	No. of Users	Total Volume (M m ³ /a)	Mining Industry (Non-Urban	ŝ				
Croundwata	Agriculture: Irrigation	11	1.34	Velddrif Adamboerskraal • Industry (Urban) Urban (Excluding					
r Use	Industry (Urban)	1	0.79	Industrial &/Or Domestic)					
	Total	12	2.13	Recreation Schedule 1					
				Langebaan Road 5 km					
	Groundwater's contribution to b investigated in Step 4 (i.e., EW	baseflow is minimal / unkno /R and BHN Reserve deter	own due to discharge to estuar mination).	tuaries and the ocean not being included (DWAF 2008b). This will however be further					
Discharge		RU		Sum of Baseflow per component (M m³/a)					
		Primary Intergranular		0	_				
	Frac	Total	nent	0	-				
Water Quality	Finitely integration 0 Fractured and Intergranular Basement 0 Total 0 The main water type in Adamboerskraal is Na-CI. The Na-CI waters are predominantly due to the deposition of marine aerosols and recharge by coastal rainfall, which ha typical Na-CI signature. However, elevated salinity suggest that boreholes in this GRU may intersect the underlying basement aquifer, which is the likely reason for the Na waters and high exceedance count for EC and SO4. Of the 2 samples collected, 1 exceeded the RQO for EC. The adjusted water quality category is B, indicating that althou some low levels of contamination exist, largely natural groundwater quality conditions prevail.								

	GRU Name: Adamboerskraal											
GRU	Main Towns: V	/elddrif										
	Total Area (km	²): 612.30										
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentratio	n Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category	
		Sulphate (mg/l) Electrical conductivity (mS/m)	52.20 499.10	52.20 499.10	1125.90 4548.00	371.35 1655.58	153.65 787.6		E			
		pH Ammonia (mg/l)	7.00 0.19	6.50 0.12	7.33 0.62	6.86 0.28	6.8 0.185		B B			
		(mg/l)	0.10	0.02	0.10	0.04	0.02		-			
		Orthophosphate (mg/l)	0.31	0.14	0.24	0.31	0.305		B			
	Adamboerskra	Dissolved Aluminium (mg/l)	-	-	-	-	-	No Cl	-	C	P	
	al	Dissolved Arsenic (mg/l)	-	-	-	-	-	Na-Ci	-	U		
		Dissolved Chromium (mg/l)	-	-	-	-	-		-			
		Dissolved Iron (mg/l)	-	-	-	-	-		-			
		Dissolved Lead (mg/l)	-	-	-	-	-		-			
		Dissolved Manganese (mg/l)	-	-	-	-	-		-			
		Dissolved Mercury (mg/l)	-	-	-	-	-		-			
Aquifer	The GRU is cor Present Status	nsidered to have Category of 'B' ir	a Groundwate ndicating locali	r Availability Pre sed, low levels	esent Status Ca of contaminat	tegory of 'B', inc ion, but no neg	licating an u a tive impac	nstressed or sligh ts apparent.	ntly stressed a	quifer, and a Gr	oundwater Qual	ity
Stress	Recharge Volume (M m³/a)		Gro	Groundwater Use (M m³/a)		Stress Index		Groundwater Availability Present Status Category		Groundwater Quality Present Status Category		

0.10

В

21.61

2.13

В

5.2. Fractured Table Mountain Group GRUs

5.2.1. Cape Peninsula GRU

	GRU Name: Cape Peninsula	
GRU	Main Towns: Hout Bay, Kommetjie and Fish Hoek	
	Total Area (km²): 292.53	
GRU Boundary Description	The Cape Peninsula GRU is bound by the extent of the TMG outcrop mostly Peninsula Form GRU, and the Malmesbury Group under the City Bowl and Devils Peak, which includes so Mountain. The Atlantic and False Bay coastlines bounds the western and eastern extent of high-water tables support wetlands and streams around Fish Hoek and Noordhoek. Deep Cape Peninsula may recharge surface water and groundwater on the Cape Flats.	mation, overlying the Cape Granite Suite along the length of the Cape Peninsula cree aprons occurring on the slopes of the mountains, especially around Table of the GRU respectively. Cenozoic sands occur in the Fish Hoek Valley where groundwater flow is unlikely to be significant, although some drainage from the
Resource Unit	Fractured Table Mountain Group Aquifer	
Quaternary Catchments	G22A, G22B, G22C and G22D	
Description	The Cape Peninsula is dominated by the presence of the TMG outcrops, mostly the Peninsula Formation. The basement is composed of Cape Granite Suite along the length of the Peninsula, and Malmesbury Group under the City Bowl and Devils Peak. This unconformity/nonconformity dips gently to the south, from around 400m in the north, around the city, to below sea level south of Fish Hoek. The Peninsula Formation varies in thickness from 60-140m. The TMG outcrop generates the rugged areas, which are mostly delineated within the Table Mountain National Park.	Simon's Town Cape Peninsula Cape Peninsula Cape Peninsula GRU GRU Hout Bay Zeekoevlei Cape Peninsula Fliets Mitchells Plain Faits Witzand Fm. Langebaan Fm. Velddrif Fm. Springfontyn Fm. Cape Supergroup Bokkeveld Group Rietvie Fm. Goudini Fm. Cadarberg Fm. Goudini Fm. Cape Supergroup Bokkeveld Group Rietvie Fm. Goudini Fm. Cape Supergroup Bokkeveld Group Rietvier Fm. Goudini Fm. Cape Granite Suite Malmesbury Group

	GRU Name: Cape P	eninsula								
GRU	Main Towns: Hout Bay, Kommetjie and Fish Hoek									
	Total Area (km²): 292.53									
Surface Water System	Numerous surface v Liesbeek and Krom	vater features occur in the transformer of transformer of the transformer of the transformer of the transformer of transformer of transformer of the transformer of transformer o	his GRU including Lake Mininsula Formation outcrops ir	chelle, Wilde the GRU.	vöelvlei, the Kleinplaa	s Dam in the centre of the G	GRU. The Silve	rmine, Hout Bay,		
Water Resource Classes & RQOs	The GRU falls within (catchments G22D a and G22B). There ar TEC in table below).	e GRU falls within the Peninsula (E1) and Cape Flats (E12) IUAs and has Water Resource Class II and III respectively. The portion of the GRU that fall within IUA E11 (catchments G22A 1 G22B). The are no EWR sites within this IUA, although there are 3 priority biophysical nodes - 1 estuary node (Wildevöelvle)) with a TEC of C and 2 river nodes (see C in table below).								
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR		
			G22B	E11-R13	Hout Bay	Bviii6	D	97		
	E11 Peninsula	Ш	G22A	E11-R14	Silvermine	Bvii20	С	98		
			G22A	E11-E04	Wildevöelvlei	Bxi14	С	107		

	GRU Name: Cape Per	ninsula								
GRU	Main Towns: Hout Bay, Kommetjie and Fish Hoek									
	Total Area (km²): 292.53									
Recharge	Recharge in the GRU i is significantly higher the permanent seeps feed and are recharged by cumulatively discharging An estimated recharge selected as the estimated area. Additional recharge	is mainly from rainfall, than surroundings, its thing mountain streams at the streams cascadining over 100 l/s to the C of <u>10.99 M m³/a</u> was ted recharge value for the streams are avained to the stream of the	but may also occur fro nickness results in low and wetlands. Scree a g off the steep cliffs. ity Bowl and Newland determined from first he Aquifer Stress (Se ilable in literature (Sec	m cloud moisture, aquifer storage a prons occur on th Various springs e s areas combined t-order recharge c ction 4.6.1.2) asse e Section 4.2.3).	especially fro nd often rech e slopes of th manating fro (GEOSS, 20 alculations us ssments. Th	om the south-east wind in sum harge is discharged as spring he Peninsula-formed mountation the scree aquifers ultimation (15). sing the Map-Centric Simula e average recharge rate equa	mmer. Although rech s in a short time fran in, especially around itely dependent on t tion method (see Se ates to <u>37.57 mm/a</u> b	arge on the Peninsula ne. Some of these are Table Mountain itself, ne Peninsula Aquifer, ction 4.2.3), and was ased on the total GRU		
	Metho	od	Area (km	²)	F	Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)			
	Map Centric Simu	ulation Method	292.53			10.99		37.57		
	There are 8 registered 0.73 M m ³ /a. Major gro (livestock watering), wh per annum (see Sectio	groundwater users in th oundwater use sectors i nich make up a combine on 4.3.3 for details).	nis GRU with a combir nclude Agriculture (irr ed 90.7% of the total g	ned groundwater u igation) and Agricu roundwater use vo	se of liture lume	HoutiBay	Cape Edith Stevens Flats Mitchells Plain	Cape Peninsula O Towns GRU Rivers Water Use Sector • Agriculture: Aqueculture		
	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)		J En	Zeekoevlei	 Agriculture: Irrigation Agriculture: Watering 		
	Fractured Table Mountain Group	Agriculture: Aquaculture	1	0.01		1 million	3	Livestock Mining Industry (Non-Urban)		
Groundwater Use		Agriculture: Irrigation	1	0.02		Peninsula		Urban (Excluding		
Groundwater Use	Peninsula Aquifer	Agriculture: Watering livestock	1	0.01		· · S	imon's Town	Domestic) • Recreation		
		Industry (Urban)	1	0.01				Water Supply Service		
	Primary /	Agriculture: Irrigation	2	0.02			Groundwater Use			
	Intergranular Aquifers	Industry (Urban)	2	0.0003		6.5	(M m³/a) 0 - 2			
	То	tal	8	8 0.073			1	2 - 4 4 - 6		
						5 km .		6 - 8 8 - 10 10 - 20 20 - 30 30 - 50		

	GRU Name: Cape Peninsula							
GRU	Main Towns: Hout Bay, Kommetjie and Fish Hoek							
	Total Area (km²): 292.53							
	Groundwater's contribution to baseflow was re-calculated using the aquifer speci discharge for this GRU is <u>4.31 M m³/a</u> (see Section 4.4.1 for details).	fic baseflow estimates from DWAF (2008b) based on equivalent recharge. The total						
	RU	Sum of Baseflow per component (M m³/a)						
Discharge	Primary / Intergranular Aquifers	0.75						
	Peninsula Aquifer	3.32						
	Fractured and Intergranular Other (TMG)	0.10						
	Fractured and Intergranular Basement	0.14						
	Total	4.31						
Water Quality	while Ca-Mg-Cl type waters are due Na* cation exchange between Na-Cl type water au sulphate, EC, nitrate + nitrite, with activities in urbanised areas being potential sou natural water quality conditions prevail, although natural, acidic pH, elevated iron ar Cape F 1 - Ca+HC3 type 2 - Na-Cl type 3 - Ca-Mg-Cl type 5 - Ca-SQ type 6 - Na-HCO3 type 7 - Ca+Ga ty	Crimers and Ca ²⁺ and Mg ²⁺ ions in the lithology. 50% of samples exceeded baselines for rees of contamination. The adjusted water quality category is B, indicating that largely ind manganese are water quality concerns.						

	GRU Name: Cape Peninsula											
GRU	Main Towns: Hout Bay, Kommetjie and Fish Hoek											
	Total Area (km ²): 292.53											
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category	
		Sulphate (mg/l)	12.20	12.20	107.40	64.75	72.2		F			
		Electrical conductivity (mS/m)	25.80	25.80	119.00	78.52	89.8		F	- - - - -		
		рН	6.96	6.54	7.57	7.07	7.1		D		в	
		Ammonia (mg/l)	0.02	0.02	2.51	0.34	0.02	Na-Cl, Ca- Mg-Cl, Ca- HCO ₃	В			
		(mg/l)	0.07	0.02	10.89	3.67	0.319		E			
	Cape Peninsula	Fluoride (mg/l)	0.26	0.05	0.33	0.16	0.15		А			
		Orthophosphate (mg/l)	1.02	0.01	1.08	0.21	0.016		A			
		Dissolved Aluminium (mg/l)	-	-	-	-	-		-			
		Dissolved Arsenic (mg/l)	-	-	-	-	-		-			
		Dissolved Chromium (mg/l)	-	-	-	-	-		-			
		Dissolved Iron (mg/l)	-	-	-	-	-		-			
		Dissolved Lead (mg/l)	-	-	-	-	-		-			
		Dissolved Manganese (mg/l)	-	-	-	-	-		-			
		Dissolved Mercury (mg/l)	-	-	-	-	-		-			
Aquifer Stress	The GRU is cons Quality Present S	sidered to have a tatus Category of	Groundwater Av B' indicating loc	vailability Prese calised, low lev	nt Status Categ rels of contami	ory of 'A', indic nation, but no	ating an unmo negative impa	dified, pristi cts apparen	ne condition t.	s aquifer, and	a Groundwater	
	Recharge (M m	Volume ³/a)	Groundwater Use (M m³/a)		Stress Index		Ground Presen	Groundwater Availability Present Status Category		Groundwater Availability Present Status Category		
	10.99		0.07			0.01		A		B		

5.2.2. Steenbras-Nuweberg GRU

	GRU Name: Steenb	ras-Nuweberg									
GRU	Main Towns: Grabouw										
	Total Area (km ²): 19	95.18									
	The confining unit the Cedarberg, and Pak Formation is conside alongside the valley. adjacent to the dam a	at overlies the Peninsula <i>i</i> huis) named the Winterh red part of the Nardouw S The Peninsula, Pakhuis, area	Aquifer and separates it from oek Mega-aquitard. Hydrog subgroup. The TMG has bee Cedarberg and Goudini Form	a the overlying eologically, th n folded into a mations outcr	y Nardouw Aquifer, consis ne entire Pakhuis – Gou a syncline, exposing the l op in the topographically	sts of a conformable package dini sequence is an effective Peninsula Formation in the lim elevated synclinal/anticlinal lin	of three aqui aquitard, alt bs forming st mbs in the m	tard units (Goudini, hough the Goudini æep mountainsides ountainous regions			
Surface Water System	The major surface w Nuweberg dams alor	rater bodies of this GRU ng with the Palmiet River.	nclude the Steenbras dam surface water runoff follows	that forms pa topography, f	rt of the Western Cape \ flowing from a north-east	Nater Supply System (WCWS to south-west, namely the Ste	S) as well a enbras River	s the Eikenhof and			
Water Resource Classes & RQOs	Nuveberg dams along with the Palmet River. Surface water running follows topography, flowing from a north-east to south-west, namely the Steenbras the Einenhold and Nuveberg dams along with the Palmet River. Surface water running follows topography, flowing from a north-east to south-west, namely the Steenbras the Steenbras of the GRU task the Berg Catchment area, i.e., the former Berg WMA. The portions of the GRU task that all within the D7 IUA (asthe GRU east of the GRU task that all within the D7 IUA (asthe GRU east of the GRU task that are of the GRU task to a Water Resource Class of II and has no Groundwater Resource Class. This GRU has no BCWR sites, although it hosts 1 priority biophysical site - the Steenbras estuary node with a TEC of B/C.										
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR			
	D7 Sir Lowry's	II	G40A	D7-R20	Steenbras	Bvii22	B/C	23			
	GRU Name: Steenbras-Nuweberg										
--------------------	--	--	---	---							
GRU	Main Towns: Grabouw										
	Total Area (km²): 195.18										
	An estimated recharge of 58.76<u>M m³/a</u> wa into the Aquifer Stress (Section 4.6.1.2) as available in literature (See Section 4.2.3).	s determined from GRAII based on the hyd sessments. The average recharge rate equ	rogeological technical assessment (CoCT, 2 ates to <u>391.11 mm/a</u> based on the total GRU	022). This recharge value was carried over J area. Additional recharge estimations are							
Recharge	Method	Area (km²)	Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)							
	After (CoCT, 2022) hydrogeological technical assessment for IWULA	150.24	58.76	391.11							
Groundwater Use	Water Supply services is the only registered of <u>9.13 M m³/a</u> (see Section 4.3.3 for detail) Aquifer and 5.48 M <u>m³/a</u> in the Nardouw Aq Water Use Sector No. of U Water Supply service 1 Total 1	I groundwater user in this GRU using a total . This is split by 3.65 <u>M m³/</u>a in the Peninsula uifer. Jsers Total Volume (M m³/a) 9.13 9.13	Strand Steenbras Drakenstein Somerset West Strand Grabo	Steenbras- Nuweberg Towns GRU Rivers Agriculture: Aquaculture Agriculture: Vatering Livestock Mining Industry (Non-Urban) Industry (Urban) Urban (Excluding Industrial &/Or Domestic) Recreation Schedule 1 Water Supply Service Total Registered Groundwater Use (M m³/a) 0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 20 20 - 30 30 - 50							

	GRU Name: Steenbras-Nuweberg						
GRU	Main Towns: Grabouw						
	Total Area (km ²): 195.18						
	Groundwater's contribution to baseflow was re-calculated using the aquifer specific baseflow estimates from DWAF (2008b) based on equivalent recharge. The total discharge for this GRU is 7.93 M m ³ /a (see Section 4.4.1 for details).						
	RU	Sum of Baseflow per component (M m3/a)					
	Primary / Intergranular Aquifers	0.08					
Discharge	Nardouw Aquifer	3.94					
	Peninsula Aquifer	2.31					
	Fractured and Intergranular Other (TMG & Bokkeveld)	1.37					
	Fractured and Intergranular Basement	0.24					
	Total	7.93					
Water Quality	The main water types in the Peninsula Aquifer are Na-Cl, Ca-Na-HCO ₃ and Ca-HCO ₃ type. The Na-Cl waters are due to the deposition of marine aerosols and recharge by coastal rainfall. Ca-HCO ₃ type waters are due to the dissolution of carbonate minerals, while Ca-Na-HCO ₃ type water are due to ion exchange between Ca ⁺ ions from Ca-HCO ₃ and Na ⁺ ions in the lithology. Exceedance of baseline concentrations was observed for all parameters except dissolved arsenic, chromium, lead and mercury, with 50% of samples exceeding baselines for sulphate and EC. The adjusted water quality category is B, indicating that largely natural water quality conditions prevail, although natural, acidic pH, elevated iron and manganese are water quality concerns.	The main water types in the Nardouw Aquifer are Na-Cl, with 3 samples showing Ca- Na-HCO ₃ and Ca-Mg-Cl type. The Na-Cl waters are due to the deposition of marine aerosols and recharge by coastal rainfall. EC and pH are lower than in the Peninsula Aquifer, with the more acidic pH being the result of dissolution of humic compounds from overlying plants, dissolution of CO ₂ (which forms carbonic acid) in recharge water and limited presence of basic ions (compared to Peninsula Aquifer) to buffer acidic waters. Exceedance of baseline concentrations were observed for all parameters except fluoride, orthophosphate, dissolved chromium and mercury. The adjusted water quality category is B, indicating that largely natural water quality conditions prevail, although natural, acidic pH, elevated iron and manganese are water quality concerns.					

	GRU Name: Steenbras-Nuweber	9			
GRU	Main Towns: Grabouw				
	Total Area (km²): 195.18				
	Key 1 - Ca-HCO3 type 2 - Na-Cl type 3 - Ca-Na-HCO3 type 4 - Ca-Na-HCO3 type 5 - Ca-SO4 type 6 - Na-HCO3 type 20 0 100 0 100 0 100 100 0 100 0 100 0 100 0 0 100	Peninsula Aquifer $100 \ 100$ $80 \ 5 \ 60 \ 5 \ 20 \ 1 \ 20 \ 0 \ 100 \ 20 \ 0 \ 100 \ 60 \ 60 \ 60 \ 60 \ 60 \ 6$	ο	Nardouw Aquifer Key 100 100 1 - Ca-HCO3 type 80 2 - Na-Cl type 80 3 - Ca-Na-HCO3 type 60 4 - Ca-Mg-Cl type 60 5 - Ca-SO4 type 60 6 - Na-HCO3 type 60 40 80 40 90 <	r 20 2 0 100 20 20 2 0 100 5 40 60 5 40 20 20 20 20 20 20 20 20 20 2
	GRU Parameter Baseline Concentration concentration	n Maximum Average Median concentration Concentration Concentration	Parameter GRU Adjusted Specific Water Water GRU Quality Guality Guality Category GRU	Parameter Baseline concentration Concentration Average concentration	on Concentration Water types Parameter GRU Adjusted Water Quality Quality Quality Category Category Category Category
	Subhate (mg1) 1.49 0.20 Image: Steenbras Neweberg (Peninsula) PH 7.18 4.87 Steenbras Neweberg (Peninsula) 0.12 0.00 0.01 Steenbras Neweberg (Peninsula) 0.12 0.00 0.01 Dissolved Chromism (mg1) 0.12 0.001 0.01 Dissolved Chromism (mg1) 0.12 0.001 0.001 Dissolved Chromism (mg1) 0.012 0.001 0.001 Dissolved Chromism (mg1) 0.007 0.001 0.007 Dissolved Chromism (mg1) 0.007 0.001 Dissolved Dissolved (mg1) 0.527 0.006 Dissolved Dissolved Chromism (mg1) 0.527 0.006 Dissolved Dissolved (mg1) 0.527 0.001	6100 625 42 38.00 14.14 13 9.35 7.01 6.8 12.00 0.42 0.1 0.76 0.40 0.5 0.97 0.15 0.1 0.080 0.040 0.04 0.010 0.007 0.01 12.05 4.2 0.1 0.15 0.1 0.44 0.15 0.1 0.1 0.020 0.015 0.02 14.205 4.398 2.153 0.010 0.005 0.317	E D B Steenbras Nuweberg (Nardouw) - - - - B - - -	Subplate (mgi) 6.50 0.40 17.70 3.66 Electrical 10.0 2.00 24.20 10.60 mcductivity 10.0 2.00 24.20 10.60 pH 5.91 4.63 6.61 5.75 Ammonia (mgi) 0.20 - 3.66 0.30 Flundse (mgi) 0.50 0.50 0.60 0.21 Othophosphate (mgi) 0.20 - 0.20 0.10 Dissolved Auminium (mgi) 0.404 0.001 0.074 0.024 Dissolved Auminium (mgi) 0.024 0.001 0.040 0.010 Dissolved Isad 0.010 0.011 0.404 0.006 Dissolved Isad 0.010 0.010 0.040 0.001 Dissolved Isad 0.010 0.011 0.404 0.006 Dissolved Isad 0.010 0.014 0.024 0.026 Dissolved Isad 0.010 0.010 0.040 0.0063 Dissolved Isad 0.010	3.35 A A 9 5.57 B 0.1 B A 0.1 A - 0.1 Cl, Ca-Ma- Cl, Ca-Ma- HCOs A 0.007 - A 0.007 A - 0.019 A - 0.007 A - 0.007 A - 0.005 - -
A	The GRU is considered to have a C Present Status Category of 'B' indic	Groundwater Availability Present Sta cating localised, low levels of cont	atus Category of 'B, indicating an tamination, but no negative in	n unstressed or slightly stressed aq npacts apparent.	uifer, and a Groundwater Quality
Aquifer Stress	Recharge Volume (M m³/a)	Groundwater Use (M m³/a)	Stress Index	Groundwater Availability Present Status Category	Groundwater Quality Present Status Category
	58.76	9.13	0.16	В	В

5.2.3. Drakensteinberge GRU

	GRU Name: Drakensteinberge							
GRU	Main Towns: None							
	Total Area (km²): 182.70							
GRU Boundary Description	The Drakensteinberge GRU is bound TMG outcrop mostly Peninsula Formation, and portions of Skurweberg, Goudini, Cedarberg, and Pakhuis formations as well as the Lourens River in the southwest. The La Motte Fault bounds the southern extent of the GRU (DWAF, 2008a; CoCT, 2004).							
Resource Unit	Fractured Table Mo	untain Group Aquifer						
	Peninsula	Nardouw						
Quaternary Catchments	G10A, G10C, G22F, G22J, H60A and H60B							
	The Table Mountain Group Super aquifer is composed of the larger Peninsula Aquifer (~600m to 1000m thick) and the lesser Nardouw Aquifer (with its component sub-aquifers, roughly 150- 300m thick). The Peninsula Aquifer and the Skurweberg Sub-aquifer are the main deep aquifer targets in this area.	The Goudini, Skuwerberg and minor portions of the Rietvlei formation, part of the Nardouw Sub-group, is present in the south-eastern portion of this GRU as the western limb of a syncline. The Nardouw Aquifer mainly consist of the Skuwerberg Formation and potentially parts of the Rietvlei Formation in the area, which can be between 150m to 300m thick.						
Description	Paarl- Franschhoek	Vernmershoek Drakensteinberge Maar Image: Display in the second seco						

	GRU Name: Draker	nsteinberge						
GRU	Main Towns: None							
	Total Area (km ²): 1	82.70						
Surface Water System	Tributaries of the Be east of the GRU, for	ibutaries of the Berg River i.e., Wolwekloof and Dwars rivers originate from this GRU and form the main surface water systems in this GRU. The Berg River dam, just ast of the GRU, forms the GRUs eastern edge boundary.						
Water Resource Classes & RQOs	Only a portion of the catchment area, i.e. III and II respectively IUA (catchment G10	e GRU is in the Eerste (D , the former Berg WMA. T /. The portion of the GRU A) has a Groundwater Ro	b) and Upper Berg (D8) IU The portions of the GRU that J that fall within the D6 IUA esource class of II. The GR	JAs, while the at fall within the (catchment C U has 1 priori Vemm Bviii1 Bviii1 Bviii13 Bet9 rakensteint	rest of the GRU lies of the D6 and D8 IUAs (ca 322F) has a Groundwar ty biophysical site with	Putside of the IUAs as the atchments G10A and G22I atchments G10A and G22I ater Resource Class III and a TEC of A. Drakensteinberge GRU Rivers Hydrotect Faults Waterbodies Priority Estuaries Quaternary catchment Priority Biophysical Nodes Yes Groundwater Resource Class II III III III	GRU extended ou P() have a Water Ro d the portion that fa	tside of the Berg esource Class of alls within the D8
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR
	D8 Upper Bergs	Ш	G10A	D8-R01	Berg	Bvii13	А	98

	GRU Name: Drakensteinberge							
GRU	Main Towns: None							
	Total Area (km²): 182.70							
	An estimated recharge of <u>27.6 M m³/a</u> was determined selected as the estimated recharge value for the Aquife GRU area. Additional recharge estimations are available	from First-order recharge calculations using the Map-(r Stress (Section 4.6.1.2) assessments. The average re in literature (See Section 4.2.3).	Centric Simulation method (see Section 4.2.3), and was echarge rate equates to <u>167.32 mm/a</u> based on the total					
Recharge	Method	Area (km²) Recharge Volum (M m³/a)	e Average Recharge Rate (mm/a)					
	Map Centric Simulation Method	164.95 27.6	167.32					
Groundwater Use	There are 2 registered groundwater users in this GRU we details).	which form part of the Agricultural (Watering Livestock) s	ector, using a total of <u>0.05 M m³/a</u> (see Section 4.3.3 for akensteinberge bwns iRU tivers r Use Sector griculture: quaculture griculture: Watering Livestock fining ndustry (Non-Urban) ndustry (Urban) Irban (Excluding ndustrial &/Or becreation chedule 1 Vater Supply Service Registered indwater Use 1 ⁷ (a) - 2 - 4 - 6 - 8 - 10 0 - 20 0 - 30 0 - 50					
	Water Use Sector	No. of Users	Total Volume (M m³/a)					
	Agriculture: Watering livestock	2	0.05					
	0.05							

	GRU Name: Drakensteinberge								
GRU	Main Towns: None								
	Total Area (km²): 182.70								
	Groundwater's contribution to bas discharge for this GRU is 7.56 M r	Groundwater's contribution to baseflow was re-calculated using the aquifer specific baseflow estimates from DWAF (2008b) based on equivalent recharge. The total discharge for this GRU is 7.56 M m ³ /a (see Section 4.4.1 for details).							
		RU		Sum of Baseflow per compon	nent (M m³/a)				
	Prima	ry / Intergranular Aquifers		0.00345					
Discharge		Nardouw Aquifer		0.40					
		Peninsula Aquifer		6.57					
	Fractured a	and Intergranular Other (TMG)		0.58					
	Fractured	and Intergranular Basement		0.00					
		Total		7.56					
Water Quality			No water quality data available						
	The GRU is considered to have a Quality Present Status Category c	Groundwater Availability Present annot be determined due to limited	Status Category of 'A', indicating d data availability.	'A', indicating an unstressed or slightly stressed aquifer, and the Groundwater					
Aquifer Stress	Recharge Volume (M m ³ /a)	Groundwater Use (M m³/a)	Stress Index	Groundwater Availability Present Status Category	Groundwater Quality Present Status Category				
	27.6	0.05	0.00	А					

5.2.4. Wemmershoek GRU

	GRU Name: Wemmershoek								
GRU	Main Towns: None								
	Total Area (km ²): 268.01								
GRU Boundary Description	The Wemmershoek GRU is bound by the TMG extent and its contact with the basement valley and Stettyns anticline in the east. The GRU is also bounded by the Du Toits/Welling in the south.	lithologies the Cape Granite Suite and the Malmesbury Group of the Franschhoek ton fault in the north (DWAF, 2008a) as well as the La Motte fault/basement aquitard							
Resource	Fractured Table Mount	ain Group Aquifer							
Unit	Peninsula	Nardouw							
Quaternary Catchments	G10B, G10A, G10C, H10J, H60B and H10K								
Gatonments	The GRU is dominated by the Peninsula Formation (thickly bedded quartzite with an average thickness of ~ 600m -1000m) of the TMG, forming an unconfined aquifer and at depth, becoming a confined aquifer. This overlies the Malmesbury Group and Cape Granite Suite basement (composed of granites and metasediments), with the contact visible in the base of the mountain slopes, exposed in the valley. Younger Cenozoic sediments infill the valley more extensively, overlying the basement geology.	Couclini, Skuwerberg and Rietviel formations, part of the Nardouw Sub-group (~150m - 300m thick), outcrops in the surrounding the Wemmershoek valley, in the south-western section of the GRU and in portions of the north-east. The basement rocks of the Malmesbury Group and the Cape Granite Suite are exposed in the valley, including younger Cenozoic sediments infilling valleys. Wemmershoek O Towns GRU							
Description	Wemmershoek Dam Wemmershoek Dam Wemmershoek Dam Wemmershoek Dam Steinberge	Rivers Hydrotect Faults Tertiary to Recent Cover Other Quatemary Cover Witzand Fm. Langebaan Fm. Velddrif Fm. Springfontyn Fm. Cape Supergroup Bokkeveld Group Rietvlei Fm. Skurveberg Fm. Goudini Fm. Cedarberg Fm. Pakhuis Fm. Peninsula Fm. Piekenierskloof Fm. Basement Klipheuwel Group Cape Granite Suite Malmesbury Group							

	GRU Name: Wemmershoek								
GRU	Main Towns: None								
	Total Area (km ²): 268.01								
Surface Water System	The Wemmershoek Dam which forms part of the Western Cape Water Supply System (WCWSS) is located within the GRU. There are several rivers that flow though this GRU including the Hugos, Elands, Holsloot, Du Toits, as well as the Drakenstein and Olifants rivers which flow into the Wemmershoek Dam.								
Water Resource Classes & RQOs	Wernmershoel Berg WMA. The portions of the RU that fall within the D8 IUA (catchments G10A and G10B) has a Water Resource Class of II and a Groundwater Resource Class of II. The GRU has no EWR sites nor any priority biophysical nodes. Wernmershoel G100								
	An estimated recharge of <u>26.83 M m³/a</u> was as the estimated recharge value for the Aq Additional recharge estimations are availabl	determined from first-order recharge calculati juifer Stress (Section 4.6.1.2) assessments. le in literature (See Section 4.2.3).	ons using the Map-Centric Simulation me The average recharge rate equates to <u>11</u>	thod (see Section 4.2.3), and was selected I<u>7.10 mm/a</u> based on the total GRU area.					
Recharge	Method	Area (km²)	Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)					
	Map Centric Simulation Method	229.13	26.83	117.10					

	GRU Name: Wemme	ershoek								
GRU	Main Towns: None									
	Total Area (km ²): 26									
	There are 11 regist groundwater use of (irrigation) and Agricu groundwater use volu	ered groundwater us <u>0.73 M m³/a</u> . Major ulture (aquaculture), w ume per annum (see S	ers in the Peninsul groundwater use se /hich comprise 58.99 Section 4.3.3 for deta	a RU with a combined ctors include Agriculture % and 41.1% of the total ails).	There are 4 regist groundwater use o 89% of the total gro	ered groundwater us f <u>0.09 M m³/a</u> . The A undwater use volume	ers in the Nardour griculture (irrigation per annum (see S o	w RU with a combined n) sector uses a total of ection 4.3.3 for details).		
Groundwater	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)		
Use	Fractured Table Mountain Group	Agriculture:	10	0.43	Fractured Table Mountain Group	Agriculture: Irrigation	2	0.01		
	(Peninsula)	inigation			(Nardouw)	Industry (Non- urban)	2	0.08		
	Intergranular Aquifers	Agriculture: Aquaculture	1	0.30	Т	otal	4	0.09		
	То	otal	11	0.73						
			Franso Franso	arl- chhoek Voëlvlei-Slangh Wemmershoek Dam Wemmershoek Dam Berg River Dam	noek	Wemmershoek O Towns GRU Rivers Water Use Sector • Agriculture: Aquaculture • Agriculture: Irrigati O Agriculture: Water Livestock • Mining • Industry (Non-Urba • Industry (Non-Urba • Industry (Urban) • Urban (Excluding Industrial &/Or Domestic) • Recreation • Schedule 1 • Water Supply Server Total Registered Groundwater Use (M m*/a) 0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 20 20 - 30 30 - 50	on ing an) /ice			

	GRU Name: Wemmershoek	
GRU	Main Towns: None	
	Total Area (km²): 268.01	
	Groundwater's contribution to baseflow was re-calculated using the aquifer specific for this GRU is <u>9.92 M m³/a</u> (see Section 4.4.1 for details).	baseflow estimates from DWAF (2008b) based on equivalent recharge. The total discharge
	RU	Sum of Baseflow per component (M m³/a)
	Primary / Intergranular Aquifers	0.95
Discharge	Nardouw Aquifer	0.80
J	Peninsula Aquifer	6.84
	Fractured and Intergranular Other (TMG)	1.21
	Fractured and Intergranular Basement	0.13
	Total	9.92
Water Quality	waters are due Na ⁺ cation exchange between Na-Cl type waters and Ca ²⁺ and Mg ²⁺ i except dissolved arsenic, lead, manganese and mercury. The adjusted water qua natural, acidic pH and elevated iron are water quality concerns.	The lithology. Exceedance of baseline concentrations was observed for all parameters lity category is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely natural water quality conditions prevail, although The lithology is A, indicating that largely is A, indicating the lithology is A, indicating the

	GRU Name: Wen	nmershoek									
GRU	Main Towns: Nor	ne									
	Total Area (km²): 268.01										
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
		Sulphate (mg/l)	3.45	0.20	20.90	2.77	0.72	_	A	_	
		Electrical conductivity (mS/m)	9.27	4.66	16.00	8.74	8.1		С		
		pH	8.26	6.40	10.01	7.58	7.3		А		
		Ammonia (mg/l)	0.45	0.01	0.66	0.13	0.048	_	A	_	А
		(mg/l)	0.53	-	1.27	0.13	0.017	A A Na-Cl, Ca- HCO ₃ , Ca- Na-HCO ₃	А	A	
		Fluoride (mg/l)	0.16	0.05	0.39	0.17	0.11		А		
		Orthophosphate (mg/l)	0.05	-	0.43	0.06	0.016		А		
	Wommorshook	Dissolved Aluminium (mg/l)	0.001	0.001	0.008	0.003	0.001		А		
	Weinnerstidek	Dissolved Arsenic (mg/l)	0.001	0.001	0.001	0.001	0.001		-		
		Dissolved Chromium (mg/l)	0.001	0.001	0.001	0.001	0.001		А	-	
		Dissolved Iron (mg/l)	0.539	0.006	0.827	0.457	0.539	-	А	-	
		Dissolved Lead (mg/l)	0.001	0.001	0.001	0.001	0.001		-		
		Dissolved Manganese (mg/l)	0.714	0.001	0.714	0.240	0.003		-		
		Dissolved Mercury (mg/l)	0.001	0.001	0.001	0.001	0.001		-		
Aquifer Stress	The GRU is considered to have a Groundwater Availability Present Status Category of 'A', indicating an unstressed or slightly stressed aquifer, and a Groundwater Qualit Present Status Category of 'A' indicating unmodified, pristine conditions.									ndwater Quality	
·	Recharge Volume (M m ³ /a)		Groundwater Use (M m³/a)		Stress Index		Groundwa St	Groundwater Availability Present Status Category		Adjusted Groundwater Quality Present Status Category	
	26.	83	0.8	1		0.03		А		А	

5.2.5. Voëlvlei-Slanghoek GRU

	GRU Name: Voëlvlei-Slanghoek
GRU	Main Towns: None
	Total Area (km²): 220.49
GRU Boundary Description	The Voëlvlei-Slanghoek GRU is bound by the TMG extent and its contact with the basement lithologies Klipheuwel Group, Cape Granite Suite, and Malmesbury Group on both the western and eastern/north-eastern edge of the GRU. In the north, the Voëlvlei-Slanghoek GRU is separated from the Groot Winterhoek GRU by the Roodezandspas Fault. The eastern/south-eastern fringe is bound by the Stettyns and Koue Bokkeveld anticline and portions of the Du Toits/Wellington fault.
Resource	Fractured Table Mountain Group Aquifer
Unit	Peninsula Nardouw
Catchments	G10E, G10J, G10D, G10F, H10E, H10F and H10J
Description	The Table Mountain Group Super aquifer is composed of the larger Peninsula Aquifer (thickly bedded quartzite) and forms the main deep aquifer targets in this RU, reaching and Cape Granite Suite basement, with the contact visible in the base of the Malmesbury Group and Cape Granite Suite basement, with the contact visible in the base of the mountain slopes, exposed in the valley on the eastern edge of the RU. Younger Cenozoic sediments infill the valley more extensively, overlying the basement geology.
	Malmesbury Veälvlet-Slanghoek Veälvlet-Slanghoek Spingfontyn Fm. Ogio Spingfontyn Fm. Ogio Spingfontyn Fm. Cape Supergroup Skkweid Group Rietvlei Fm. Skurweberg Fm. Goudini Skurweberg Fm. Wellington Krom Spingfontyn Fm. Vindmeul Spingfontyn Fm. Starweberg Fm. Goudini Perinsula Fm. Petenierskloof Fm. Pekenierskloof Fm. Basement Basement Suite Malmesbury Group

HIGH CONFIDENCE GROUNDWATER RESERVE DE TERMINATION STUDY IN THE BERG CATCHMENT: ECOLOGICAL REFERENCE CONDITIONS REPORT

	GRU Name: Voëlvlei	-Slanghoek							
GRU	Main Towns: None								
	Total Area (km ²): 220	0.49							
Surface Water System	The GRU sits just west of the Voëlvlei Dam, the second largest reservoir of the Western Cape Water Supply System (WCWSS). It includes a canal that can supply water from the reservoir from a weir in the Nuewkloof Pass on the Klein Berg River.								
Water Resource Classes & RQOs	Only a portion of the the Lower Berg (B4) I GRU extended outsid portions of the GRU th has a Water Resource Water Resource Class The rest of the GRU biophysical site - the H	GRU is in the Middle IUAs, while the rest o e of the Berg catchme at fall within the D9 an e Class of III, and the s of II with a correspor has no Groundwater (lein Berg River node	Berg (D9), the Berg to f the RU lies outside ent area, i.e., the formed d B4 IUAs (catchment portions that fall within nding Groundwater Re Resource Class. This with a TEC of C.	ributaries (C5) and of the IUAs as the er Berg WMA. The is G10D and G10F) in the C5 IUA has a esource Class of II. is site has 1 priority	Middle-Lower Berg G10J B4 G10F Fish G21C D10 C21E Wellington G21E Ma 5 km Jry G100		H10A Skaap H10A Skaap H10B H10D H0F H10D H0F H10D H10H H10C H10H H10C H10H H10C	Voëlvlei-Slanghoek	
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR	
	C5 Berg Tributaries	Ш	G10E	C5-R07	Klein Berg	Biii4	С	82	

	GRU Name: Voëlvlei-Slanghoek		
GRU	Main Towns: None		
	Total Area (km²): 220.49		
Recharge	An estimated recharge of <u>14.1 M m³/a</u> was determined fro as the estimated recharge value for the Aquifer Stress (Additional recharge estimations are available in literature	om first-order recharge calculations using the Map-Cer Section 4.6.1.2) assessments. The average recharge (See Section 4.2.3).	tric Simulation method (see Section 4.2.3), and was selected rate equates to <u>76.52 mm/a</u> based on the total GRU area.
	Method	Area (km ²) (M m ³ /a	(mm/a)
	Map Centric Simulation Method	184.26 14.1	76.52
	There are 3 registered groundwater users in the Peninsula (watering livestock) and Agriculture (irrigation) which com	RU with a combined groundwater use of 0.14 M m³/a. prise of 73.1% and 26.9% respectively of total groundwater use of 73.1% and 26.9% respectively of total groundwater use of total groundwater	Major groundwater use sectors in this GRU include Agriculture rater use volume per annum (see Section 4.3.3 for details).
	water Use Sector	No. of Users	
	Agriculture: Irrigation	2	0.04
		3	0.10
Groundwater Use	Midu	Saron Witsenberg Tulbagh Hermon Wellington Wellington Wellington Stm Ty Paarl Wemmershoek	anghoek ctor Fe : Irrigation : Watering lon-Urban) //rban) cluding &/Or f ply Service red Use

	GRU Name: Voëlvlei-Slanghoek							
GRU	Main Towns: None							
	Total Area (km ²): 220.49							
	Groundwater's contribution to based for this GRU is <u>4.18 M m³/a</u> (see Se	flow was re-calculated using the aq ection 4.4.1 for details).	uifer specific baseflow estimates f	rom DWAF (2008b) based on equiv	alent recharge. The total discharge			
	Primar	y / Intergranular Aquifers		0.12	, <i>,</i> ,			
Discharge		Nardouw Aquifer		0.54				
		Peninsula Aquifer		2.79				
	Fractured a	nd Intergranular Other (TMG)		0.74				
	Fractured	and Intergranular Basement		1.86E-08				
		Total		4.18				
Water Quality	No water quality data available							
Aquifer Stress	The GRU is considered to have a G Present Status Category cannot be	roundwater Availability Present Sta determined due to limited data ava	atus Category of 'A', indicating an ailability.	, indicating an unstressed or slightly stressed aquifer, and the Groundwater Quality				
	Recharge Volume (M m³/a)	Groundwater Use (M m³/a)	Stress Index	Groundwater Availability Present Status Category	Groundwater Quality Present Status Category			
	14.1	0.14	0.01	А	N/A			

5.2.6. Witsenberg GRU

	GRU Name: Witsenberg							
GRU	Main Towns: None							
	Total Area (km ²): 220.49							
GRU Boundary Description	The western extent of the Witsenberg GRU is bound by the extent of the TMG (predomina Group). The extent of the Berg catchment bounds the eastern and southern fringe, with the GRU.	ntly Peninsula Formation) and its contact with the basement lithologies (Malmesbury e G10G surface water quaternary catchment divide bounding the northern portion of						
Resource	Fractured Table Mountain Group Aquifer							
Quaternany	Peninsula	Nardouw						
Catchments	G10E							
	The Peninsula Formation, composed of thickly bedded quartzites, dominates the mountains of the GRU and forms an unconfined aquifer. The formation ranges in thickness from between 550-1500m thick.	The Goudini, Skuwerberg and Rietvlei formations, part of the Nardouw Sub-group, are present in this GRU. The aquifers include the Skuwerberg and Rietvlei formation which have an average thickness of 200 – 300m and 150 – 200m respectively.						
Description	Steel Winterhoek Nein Barg Tulbagh Tulbagh Stm	Witsenberg Witsenberg GRU Rivers Hydrotect Faults Tertiary to Recent Cover Other Quatemary Cover Witzand Fm. Langebaan Fm. Velddrif Fm. Springfortyn Fm. Cape Supergroup Bokkeveld Group Rietviei Fm. Skurweberg Fm. Goudini Fm. Cedatberg Fm. Pakhuis Fm. Peninsula Fm. Preinsula Fm. Graafwater Fm. Piekenierskloof Fm. Basement Klipheuwel Group Cape Granite Suite Malmesbury Group						

	GRU Name: Witsenberg			
GRU	Main Towns: None			
	Total Area (km²): 220.49			
Surface Water System	There are no major surface water systems i	n this RU except for a tributary of the Klein-	Berg River.	
Water Resource Classes & RQOs	The GRU falls entirely in the Berg Tributarie biophysical nodes.	s (C5) IUA and has a Water Resource Class	s is II and a Groundwater Resource Class of II Witsenberg GRU Rivers Hydrotect Faults Waterbodies Priority Estuaries Quaternary catchment Priority Biophysical Nodes Yes Groundwater Resource Class Mill Witsenberg III Waterbodies	. There are no EWR sites nor any priority
	An estimated recharge of 2.78 M m³/a was as the estimated recharge value the Aquifer recharge estimations are available in literatu	determined from first-order recharge calcula Stress (Section 4.6.1.2) assessments. The ire (See Section 4.2.3).	ations using the Map-Centric Simulation metho average recharge rate equates to <u>69.59 mm/a</u>	od (see Section 4.2.3), and was selected a based on the total GRU area. Additional
Recharge	Method	Area (km²)	Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)
	Map Centric Simulation Method	184.26	2.78	69.59

	GRU Name: Witsenberg			
GRU	Main Towns: None			
	Total Area (km²): 220.49			
	There are 3 registered groundwater users in Agriculture (irrigation	n this GRU with a combined groundwat n) which comprise of 100% of total grou Water Use Sector	er use of <u>0.08 M m³/a.</u> Major groundwater use se undwater use volume per annum (see Section 4.	ector include Agriculture (watering) and 3.3 for details).
	Fractured Table Mountain Group	Agriculture: Irrigation	3	0.08
	Total	Agnoulture. Inigation	3	0.08
Groundwater Use		Groot interhoek Witsenberg Tulbagh Tulbagh	Bella Vista Witsenberg Nduli O Towns GRU Rivers Bella Vista Additional Rivers Nduli Ceres	

	GRU Name: Witsenberg								
GRU	Main Towns: None								
	Total Area (km ²): 220.49								
	Groundwater's contribution to base for this GRU is 0.93 M m³/a (see S	flow was re-calculated using the ac ection 4.4.1 for details).	quifer specific baseflow estimates fr	rom DWAF (2008b) based on equiv	alent recharge. The total discharge				
		RU	Sum of Baseflow per component (M m³/a)						
	Prima	ry / Intergranular Aquifers		0.00					
Discharge		Peninsula Aquifer		0.85					
	Fractured a	and Intergranular Other (TMG)		0.08					
	Fractured	and Intergranular Basement	0.00						
		Total		0.93					
Water Quality	No water quality data available								
Aquifer Stress	The GRU is considered to have a G Present Status cannot be determin	Groundwater Availability Present Sta ed due to limited data availability.	atus Category of 'A', indicating an u	instressed or slightly stressed ac	quifer, and the Groundwater Quality				
	Recharge Volume (M m³/a)	Groundwater Use (M m³/a)	Stress Index	Groundwater Availability Present Status Category	Groundwater Quality Present Status Category				
	2.78	0.08	0.03	А	N/A				

5.2.7. Groot Winterhoek GRU

	GRU Name: Groot Winterhoek							
GRU	Main Towns: None							
	Total Area (km ²): 454.92							
GRU Boundary Description	The Groot Winterhoek GRU is bound by the extent of the TMG and its contact with the basement lithologies on its western flank (Malmesbury Group). The southern boundary, and its separation from Voëlvlei-Slanghoek and the Witsenberg GRUs, are defined by the Roodezandspas Fault line, the contact with the Malmesbury Group basement, and portions of the G10G surface water quaternary catchment divide. Sections of the E10C surface water quaternary catchment divide, and the Berg catchment marks the north-eastern edge of the GRU.							
Resource	Fractured Table Mountain Group Aquifer							
Unit	Peninsula	Nardouw						
Quaternary Catchments	G10J, G10E, G10H, E10C and G10G							
	The TMG in the Groot Winterhoek has been folded into a syncline, exposing the Peninsula Formation (composed of thickly bedded, super mature quartzite/ quartz sandstones) in the steep limbs to the east and west of the GRU. The formation ranges in thickness from between 600m and 1000m in this area.	The Goudini, Skuwerberg and Rietvlei formations of the Nardouw Sub-group (150m – 300m thick) are present at the centre of the syncline, with the Groot-Kliphuis River closely following the syncline axis. The aquifers include the Skuwerberg (thickly bedded quartzite) and Rietvlei (feldspathic sandstone with minor shales) formations.						
Description	Krom Porterville Eendekuil Basin 5 km	Groot Winterhoek						

	GRU Name: Groot W	linterhoek						
GRU	Main Towns: None							
	Total Area (km ²): 454	4.92						
Surface Water System	The Olifants River, ori River. The major surf follow the general top	ginating from the north ace water system in t ography of the Groot l	nern extent of the Groo his GRU is the Olifan Drakenstein Mountain	ot Winterhoek GRU, co ts River which passes as.	omprises of various tri directly though the C	butaries, including the GRU at its north/north	Klein Kliphuis River a eastern edge. Most s	nd the Vier-en-Twintig surface water featured
Water Resource Classes & RQOs	Only a portion of the IUAs, while the rest of the Berg catchment a within the B4 IUA (ca and the portions of th has a Water Resource (catchment G10H) ha within the C5 IUA (ca site has 1 priority biop	GRU is in the Berg the GRU lies outside rea, i.e., the former B tchments G10H and e GRU that fall within e Class of II. The port as Groundwater Reso tchment G10E) has a shysical site – the Vier	Tributaries (C5) and to the IUAs as the GRU erg WMA. The portion G10J) has a Water F the C5 IUA (catchme ions of the GRU that to ource Class of II and a Groundwater Resou- r-en-twintig River node	the Lower Berg (B4) J extended outside of ns of the RU that fall Resource Class of III ent G10G and G10E) fall within the B4 IUA the portions that fall urce Class of II. This e of TEC B/C	Krom Clock Eendekuil Basin B4 Clov Eendekuil Basin Clov Eeeu Eeeu Eeeu	E100 E100 Groot Winterhoek G106 C5 Bil Mghoek	E10B Climits E21C E10A E21D E21A E21A	Groot Winterhoek
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR
	C5 Berg Tributaries's	Ш	G10G	C5-R08	Vier-en-Twintig	Bi1	B/C	23

	GRU Name: Groot V	Vinterhoek								
GRU	Main Towns: None									
	Total Area (km ²): 45	54.92								
Recharge	An estimated recharge of <u>22.5 M m³/a</u> was determined from first-order recharge calculations using the Map-Centric Simulation method (see Section 4.2.3), and was selected as the estimated recharge value for the Aquifer Stress (Section 4.6.1.2) assessments. The average recharge rate equates to <u>59.33 mm/a</u> based on the total GRU area. Additional recharge estimations are available in literature (See Section 4.2.3).									
reenarge	Ме	thod	Area	a (km²)		Recharge (M m	Volume ³/a)	Average Re (mr	charge Rate n/a)	
	Map Centric Si	mulation Method	37	79.26		22.	5	59	.33	
	There are 4 registered groundwater users in the Peninsula RU with a combined groundwater use of 0.19 M m ³ /a (see Section 4.3.3 for details).					There are 7 registe groundwater use of (irrigation) (see Sect i	red groundwater use 0.21 M m ³ /a. The m ion 4.3.3 for details).	ers in the Nardouw ajor groundwater use	RU with a combined e sector is Agriculture	
Groundwater Use	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)		RU	Water Use Sector	No. of Users	Total Volume (M m³/a)	
	Fractured Table Mountain Group (Peninsula)	Agriculture: Irrigation	3	0.18	ļſ	Fractured Table				
		Industry (Non-urban)	1	0.01	(Nardouw)		Agriculture: Irrigation	7	1.21	
	Тс	otal	4	0.19	Total		otal	7	1.21	
	Total 4 0.19 Groot Winterhoek Groot Winterhoek Groot Winterhoek Groot Winterhoek Groot Winterhoek Groot Winterhoek Water Use Sector Agreeuther: Agreeuther Agreeuther Porterville Op die Berg Deredekut Basin Saron Witsenberg Saron Witsenberg Saron Witsenberg Saron Witsenberg Saron Witsenberg Saron Saron									

	GRU Name: Groot Winterhoek								
GRU	Main Towns: None								
	Total Area (km²): 454.92								
	Groundwater's contribution to base for this GRU is 7 <u>.62 M m³/a</u> (see Se	flow was re-calculated using the aqui ection 4.4.1 for details).	fer specific baseflow estimates	s from DWAF (2008b) based on equiva	alent recharge. The total discharge				
		RU		Sum of Baseflow per component (M m ³ /a)					
	Primai	y / Intergranular Aquifers		3.12E-04					
Discharge		Nardouw Aquifer		2.85					
		Peninsula Aquifer		3.74					
	Fractured a	nd Intergranular Other (TMG)		1.02					
	Fractured	and Intergranular Basement		2.61E-06					
		Total		7.62					
Water Quality	No water quality data available								
	The GRU is considered to have a G Present Status cannot be determine	Broundwater Availability Present Statu ed due to limited data availability.	us Category of 'B', indicating a	n unstressed or slightly stressed aq	uifer, and the Groundwater Quality				
Aquifer Stress	Recharge Volume (M m³/a)	Groundwater Use (M m³/a)	Stress Index	Groundwater Availability Present Status Category	Groundwater Quality Present Status Category				
	22.50	1.39	0.06	В	N/A				

5.2.8. Piketberg GRU

	GRU Name: Piketberg							
GRU	Main Towns: Goedwerwacht							
	Total Area (km ²): 389.07							
GRU Boundary Description	The Piketberg GRU is bound entirely by the extent of the TMG outcrop (predominantly the Peninsula, Rietvlei, Cederberg, Graafwaters and Piekenierskloof formations) and its contact with the surrounding basement lithologies (Malmesbury Group). The south/south-western edge of the GRU is bound by portions of the Aurora-Piketberg fault zone.							
Resource	Fractured Table Mount	ain Group Aquifer						
Unit	Peninsula	Nardouw						
Quaternary Catchments	G10M, G30D, G10K, G30A and G10H	G10M, G30D, G10K, G30A and G10H						
	This mountainous area of TMG contains the aquifer-bearing Peninsula formation (~600m – 1000m thick) in the limbs of a syncline, above the Malmesbury Group basement. The basement occurs at the base of the mountain on the eastern side outside this GRU - this forms a no-flow boundary for groundwater on the southeast of the Piketberg GRU, except for minor flow into screes and weathered zones of the Malmesbury Group. The Sandveld Group overlie flat areas and screes on the mountain slopes and overlies the TMG and basement to the northwest of the GRU.	This mountainous area is dominated in the Rietvlei formation (feldspathic sandstone with minor sandstone, roughly 150-200m thick) of the Nardouw Sub-group. This formation is present in the valley of the syncline. The Sandveld Group overlie flat areas and screes on the mountain slopes and overlies the TMG and basement to the northwest of the GRU.						
Description	Adamboerskraal Middle-Lower Berg Berg	Piketberg Piketberg De Hoek						

	GRU Name: Piketberg							
GRU	Main Towns: Goedwerwacht							
	Total Area (km²): 389.07							
Surface Water System	Major surface water systems include the Boe	smans and Platkloof Rivers. Surface-wate	er flow occurs from the high lying Piketberg I	Mountains of the TMG outcrop.				
Water Resource Classes & RQOs	Only a portion of the GRU is in the Lower Be while the rest of the GRU lies outside the IU. Berg catchment area, i.e., the former Berg WM the B4 IUA (catchments G10K and G10H) ha portions that fall within the A1 IUA (catchmen II. The portions of the GRU that fall within t Groundwater Resource Class (except for the G10H which as a Groundwater Resource Cla catchment G10M has a Groundwater Resou sites nor any priority biophysical nodes.	rg (B4) and the Berg Estuary (A1) IUAs, As as the GRU extended outside of the MA. The portions of the RU that fall within s a Water Resource Class of III and the t G10M) has a Water Resource Class of he B4 IUA (catchments G10H) has no small portion that falls within catchment ass of II; and the portions that fall within rce Class of II). This GRU has no EWR	Georger A1 Piketberg Piketberg Piority Estuaries Quaternary catchment Priority Biophysical Nodes Priority Biophysical Priority Biophysical Priority Biophysical Priority Biophysical Nodes Priority Biophysical Priority Biophysical Nodes Priority Biophysical Priority Biophysical Priori					
	An estimated recharge of <u>20.33 M m³/a</u> was c as the estimated recharge value for the Aqu Additional recharge estimations are available	letermined from First-order recharge calculifer Stress (Section 4.6.1.2) assessment in literature (See Section 4.2.3).	ulations using the Map-Centric Simulation me ts. The average recharge rate equates to (ethod (see Section 4.2.3), and was selected 68.16 mm/a based on the total GRU area.				
Recharge	Method	Area (km²)	Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)				
	Map Centric Simulation Method	298.29	20.33	68.16				

	GRU Name: Piketberg									
GRU	Main Towns: Goedwerw	vacht								
	Total Area (km ²): 389.07	Total Area (km ²): 389.07								
	There are 46 registered groundwater users in the Peninsula RU with a combined groundwater use of $5.14 \text{ M m}^3/a$. The major groundwater use sector is Agriculture (irrigation) which uses a total of 97.5% of the total groundwater use volume per annum (see Section 4.3.3 for details).				There are 6 registered groundwater users in the Nardouw RU with a combined groundwater use of $0.44 \text{ M m}^3/a$. The major groundwater use sector is Agriculture (irrigation) which uses a total of 99.5% of the total groundwater use volume per annum (see Section 4.3.3 for details).					
	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)		
	Fractured Table	Agriculture: Irrigation	41	5.02	Fractured Table Mountain G	Agriculture:	5	0.44		
	Mountain Group (Peninsula)	Industry (Non-urban)	2	0.056	(Nardouw)	Irrigation		0.11		
		Water Supply Service	3	0.07	Primary / Intergranular Aquit	ers Agriculture: Irrigation	1	0.002		
	Total 46 5.146				Total 6 0.442					
Groundwater Use		Ada	mboerskraal Midd	He-Lower Berg	Piketberg Piketberg De Hoek Piketborg De Hoek	ector e: irre e: Irrigation e: Watering c: Non-Urban) Urban) (cluding &/Or) n 1 pply Service ered r Use				

GRU	GRU Name: Piketberg						
	Main Towns: Goedwerwacht						
	Total Area (km²): 389.07						
	Groundwater's contribution to base for this GRU is 0.12 M m³/a (see S	flow was re-calculated using the ac ection 4.4.1 for details).	quifer specific baseflow estimates fr	om DWAF (2008b) based on equiv	alent recharge. The total discharge		
Discharge		RU		Sum of Baseflow per component	ent (M m³/a)		
	Primai	ry / Intergranular Aquifers		0.00			
		Nardouw Aquifer		0.00			
Diccitargo		Peninsula Aquifer		0.07			
	Fractured a	and Intergranular Other (TMG)	0.05				
	Fractured	and Intergranular Basement	0.00				
		Total		0.12			
Water Quality	No water quality data available						
	The GRU is considered to have a Status cannot be determined due to	Groundwater Availability Present S o limited data availability.	Status Category of 'C', indicating a	moderately stressed aquifer, and	d the Groundwater Quality Present		
Aquifer Stress	Recharge Volume (M m ³ /a)	Groundwater Use (M m³/a)	Stress Index	Groundwater Availability Present Status Category	Groundwater Quality Present Status Category		
	20.33	5.58	0.27	С	N/A		

5.3. Fractured and Intergranular Basement GRUs

5.3.1. Cape Town Rim GRU

	GRU Name: Cape Town Rim						
GRU	Main Towns: Cape Town, Cape Flats and Brackenfell						
	Total Area (km ²): 826.03						
GRU Boundary Description	Portions of the G21F, G21E, G22H and G22G surface water quaternary catchment divides form the northern and eastern edge of the GRU, with the extent of the basement lithologies (the Cape Granite Suite and the Malmesbury Group) and its contact with the TMG forming the boundary between the Cape Town Rim GRU and the Cape Peninsula GRU. Quaternary catchments were used because groundwater flow is often parallel to topography. The western/north-western fringe of the GRU is bound by the Table Bay and False Bay coastlines.						
Resource Unit	Fractured and Intergranular Basement Aquifer						
Quaternary Catchments	G22C, G22E, G22B and G22D						
Description	The Cape Town Rim Basement underlies (see cross section of the CFA) and surrounds the Cape Flats Aquifer GRU. The basement geology comprises of Neoproterozoic rocks of the Tygerberg Formation (Malmesbury Group), which is intruded by the late Neoproterozoic to early Cambrian Cape Granite Suite. The Tygerberg Formation constitutes and shale deformed into simple folds, and is generally highly weathered. (see Section 3.1 for detail).						

	GRU Name: Cape To	own Rim								
GRU	Main Towns: Cape T	own, Cape Flats and	Brackenfell							
	Total Area (km ²): 82	6.03								
Surface Water System	Main rivers comprise	Main rivers comprise of the Kuils, Lotus, Liesbeek and Elsieskraal rivers, although most of these occur on the CFA which overlies the basement.								
Water Resource Classes & RQOs	The GRU falls within Resource Class II and (catchments G22D a Groundwater Resour G22A and G22B). Th of 1 estuary node (Rie	the Peninsula (E1) ar d III respectively. The and G22C) has a Gro ce Class for the porti ere are no priority EW etvlei/ Diep) with a TE	nd Cape Flats (E12) I portion of the GRU tha bundwater Resource ons that fall within IL /R sites within this IU C of C fall within the C	IUAs and has Water at fall within IUA E12 Class of II, and no JA E11 (catchments A, although portions GRU.	Rietvlei/Die Rietvlei/Die Bviii6 E11 VIEVII20vlei Cape 5 km, sula	Cape Town Rim Edith Stevens Cape 22 DecFlatSei Rondevtei	G21E G21E G22E C22E C22E C22E C22E C22E C22E C22	Cape Town Rim GRU Rivers Hydrotect Faults Vaterbodies Priority Estuaries Quaternary catchment Priority Biophysical Nodes Yes Groundwater Resource Class II Water Resources Class III III HII III III III		
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR		
	D10 Diep	Ш	G21F	D10-E03	Rietvlei/ Diep	Bxi7	С	78		

	GRU Name: Cape Town Rim			
GRU	Main Towns: Cape Town, Cape Flats and E	Brackenfell		
	Total Area (km ²): 826.03			
Recharge	An estimated recharge of <u>18.6 M m³/a</u> was de as the estimated recharge value for the Aqu Additional recharge estimations are available <u>Method</u> Map Centric Simulation Method	etermined from first-order recharge calculifer Stress (Section 4.6.1.2) assessment in literature (See Section 4.2.3). Area (km ²) 298.29	Ilations using the Map-Centric Simulation ments. The average recharge rate equates to a second secon	thod (see Section 4.2.3), and was selected 22.83 mm/a based on the total GRU area. Average Recharge Rate (mm/a) 22.83
Groundwater Use	There are 169 registered groundwater users is (irrigation) which comprise of 43.5% and 39.0	n this GRU with a combined groundwater % respectively of total groundwater use Malmesbury Milnerton Rine Cape Town Flats Stevens Rin Hout/Bay Mitchells Plain Zeekoevlei 5 km	er use of <u>6.11 M m³/a</u> . Major groundwater use volume per annum (see Section 4.3.3 for de Cape Town Rim O Towns GRU Rivers Water Use Sector • Agriculture: Aquaculture • Agriculture: Watering Livestock • Mining • Industry (Non-Urban) • Industry (Urban) • Urban (Excluding Industrial &/Or Domestic) • Recreation • Schedule 1 • Water Supply Service Total Registered Groundwater Use (M m ³ /a) 0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 20 20 - 30 30 - 50	e sectors include: Industry, and Agriculture tails).

	GRU Name: Cape Town Rim						
GRU	Main Towns: Cape Town, Cape Flats and	d Brackenfell					
	Total Area (km²): 826.03						
	RU	Water Use Sector	No. of Users	Total Volume (M m ³ /a)			
		Agriculture: Irrigation	6	0.07			
		Industry (Non-urban)	2	0.02			
	Frankright and below methods Decomposite	Industry (Urban)	9	0.26			
	Fractured and Intergranular Basement	Schedule 1	3	0.004			
		Urban (Excluding industrial and/or domestic)	1	0.01			
		Water Supply service	9	0.36			
		Agriculture: Irrigation	12	0.49			
		Agriculture: Watering Livestock	1	0.03			
	Fractured Table Mountain Group (Peninsula)	Industry (Urban)	1	0.03			
		Water Supply service	1	0.03			
		Agriculture: Aquaculture	1	0.004			
		Agriculture: Irrigation	22	1.82			
		Agriculture: Watering Livestock	3	0.06			
	Primary / Intergranular Aquifers (at surface	Industry (Urban)	9	0.20			
	but abstracting from underlying basment)	Industry (Non-urban)	70	2.37			
		Schedule 1	7	0.02			
		Urban (Excluding industrial and/or domestic)	3	0.02			
		Water Supply service	9	0.31			
	Total		169	6.11			
	Groundwater's contribution to baseflow was for this GRU is <u>3.03 M m³/a</u> (see Section 4	s re-calculated using the aquifer specific bas I. 4.1 for details).	eflow estimates from DWAF (2008b) based	l on equivalent recharge. The total discharge			
	R	łU	Sum of Baseflow pe	r component (M m³/a)			
Discharge	Primary / Interg	ranular Aquifers	1.98				
5	Peninsu	la Aquifer	3.97E-03				
	Fractured and Interg	ranular Other (TMG)	0.01				
	Fractured and Inte	rgranular Basement	1	.04			
	Тс	otal	3.03				

	GRU Name: Cape Town Rim					
GRU	Main Towns: Cape Town, Cape Flats and Brackenfell					
	Total Area (km²): 826.03					
Water Quality	The main water type in the Cape Town Rim is Na-CI. The Na-CI waters are due to and saturation of Na and CI lones as a result of increased groundwater residence time in the faltively low transmissivity classification can exceeding baselines for subhate and fluoride. None of the 19 samples exceed RQOs for this GRU. The adjusted water quality category is c, indicating that moderate levels of localised contamination exist. Contaminating activities include agriculture and industry. However, naturally elevated concentration of the same second RQOs for this GRU. The adjusted water quality category is c, indicating that moderate levels of localised contamination exist. Contaminating activities include agriculture and industry. However, naturally elevated concentration of dissolved ions is also a source of exceedances of baseline concentrations.					

	GRU Name:	Cape Town Rim									
GRU	Main Towns: Cape Town, Cape Flats and Brackenfell										
	Total Area (km²): 826.03										
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
		Sulphate (mg/l)	8.50	5.50	35-	60.92	34.1		F		
		Electrical conductivity (mS/m)	105.10	21.00	659.00	150.69	92		В		
		рН	7.78	7.00	8.62	7.51	7.47		A		
		Ammonia (mg/l)	0.02	0.02	0.75	0.06	0.02		A	A	
		(mg/l)	0.28	0.02	6.57	0.92	0.13		В		
		Fluoride (mg/l)	0.14	0.12	2.60	0.45	0.27	Na-Cl, Ca- Mg-Cl	F		
	Cape Town Rim	Orthophosphate (mg/l)	0.01	-	0.13	0.02	0.01		D		
		Dissolved Aluminium (mg/l)	-	-	-	-	-		-		C
		Dissolved Arsenic (mg/l)	-	-	-	-	-		-		Ŭ
		Dissolved Chromium (mg/l)	-	-	-	-	-		-		
		Dissolved Iron (mg/l)	-	-	-	-	-		-		
		Dissolved Lead (mg/l)	-	-	-	-	-		-		
		Dissolved Manganese (mg/l)	-	-	-	-	-		-		
		Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	The GRU is Status Categ	considered to have ory of 'C' indicating	a Groundwater m oderate level s	Availability Prese s of localised co	nt Status Catego ntamination, but	ry of 'C', indicatir little or no nega	ng a moderately tive impacts app	stressed aqu parent.	uifer, and a Gr	oundwater C	ality Present
Aquifer Stress	Rec	harge Volume (M m³/a)	Grour (Groundwater Use (M m³/a)		Stress Index		Groundwater Availability Present Status Category		Groundwater Quality Present Status Category	
		18.6		6.11		0.33		С		С	

5.3.2. Stellenbosch-Helderberg GRU

	GRU Name: Stellenbosch-Helderberg
GRU	Main Towns: Stellenbosch and Somerset West
	Total Area (km ²): 571.29
GRU Boundary Description	Portions of the G22E and G21E surface water quaternary catchments divide as well as the (CoCT 2018) aquifer model boundary (i.e., the Cape Flats GRU) form the northern and western extent of the Stellenbosch-Helderberg GRU. The G10C surface water quaternary catchment divide, as well as the contact between an interpolated extent of the basement lithology (the Cape Granite Suite and the Malmesbury Group). The TMG forms the eastern/south-eastern boundary of the GRU. The south-western edge of the GRU is bound by the False Bay coastline where preferential groundwater flow direction towards the southwest was also considered when defining the GRU boundary.
Resource Unit	Fractured and Intergranular Basement Aquifer
Quaternary Catchments	G22G, G22H, G22F, G22J and G22K
Description	This area is underlain predominantly by Malmesbury Group and Cape Granite Suite, the latter forming higher rocky bills, in contrast to the generally weathered lower rolling hills. The Peninsula Aquifer is unconfined in this GRU, however it can form a significant aquifer.

	GRU Name: Stellen	bosch-Helderberg										
GRU	Main Towns: Steller	nbosch and Somerset W	/est									
	Total Area (km ²): 57	1.29										
Surface Water System	This GRU comprises of the numerous rivers, namely: Eerste, Lourens, Jonkershoek and Sir Lowrys Pass rivers. The Blouklip, Jonkershoek and Klippies tributaries merge to form the Eerste River. All rivers follow topography, flowing from the higher lying mountainous areas to the north to the coastal in the south.											
Water Resource Classes & RQOs	The GRU falls within Class III and II respective G22F) has a Ground for the rest of the RU There is 1 priority EV nodes. The Eerste and of D.	the Eerste (D6) and Sir Le ectively. The portion of th lwater Resource Class of WR site - the Eerste (Jon nd Lourens estuaries are	owry's (D7) IUAs and has W e GRU that fall within IUA I i III, and no Groundwater Ro kershoek), and 3 priority bio also present in this GRU, bo	ater Resource D6 (catchment esource Class ophysical river oth with a TEC	Botean Botean Cape Flats Eerste Estuary-Ouren Estuary	Paarl Franschhoek G22G SS ^S Da Biil6 G22F Biil6 G22F G22F G22F G22F G22F G22F G22F G22		Stellenbosch- Helderberg GRU Rivers Hydrotect Faults Vaterbodies Priority Estuaries Quaternary catchment riority Biophysical odes Yes roundwater esource lass II III later Resources lass II III III				
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR				
			G22F	D6-R16	Eerste (Jonkershoek)	Biii6	С	93				
	D6 Eerste	III	G22G	D6-R17	Klippies	Biv8	D	77				
			G22H	D6-E06	Eerste Estuary	Bxi3	D	90				
			G22J	D7-R18	Lourens	Bvii21	D	114				
	D7 Sir Lower's	П	G22K	D7-R19	Sir Lowry's Pass*	Bviii9	С	84				
			G22J	D7-E07	Lourens Estuary	Bxi4	D	85				
	GRU Name: Stellenbo	osch-Helderberg										
-------------	--	--	--	---	-----------------------------	---	--	--	--	--	--	--
GRU	Main Towns: Stellent	osch and Somerset V	West									
	Total Area (km ²): 571	.29										
	An estimated recharge of <u>41.52 M m³/a</u> was determined from First-order recharge calculations using the Map-Centric Simulation method (see Section 4.2.3), and was selected as the estimated recharge value for Aquifer Stress (Section 4.6.1.2) assessments. The average recharge rate equates to <u>72.77 mm/a</u> based on the total GRU area. Additional recharge estimations are available in literature (See Section 4.2.3).											
Recharge	Met	hod	Area (km²)		Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)						
	Map Centric Sin	nulation Method	570 5	8	41 52	72.77						
			010.0		11.02							
	There are 163 registere of <u>8.79 M m³/a.</u> Majo Agriculture (irrigation) groundwater use volum	ed groundwater users in or groundwater use so which comprise of ne per annum (see Se	n this GRU with a com ectors include Water 64.3% and 21.9% ction 4.3.3 for details)	bined groundwater us Supply Services and respectively of tota Total Volume	Kraaifontein Brackenfell	Paarl- Stellenbosch- Franschhoek GRU Rivers Water Use Sector Agriculture: Agriculture						
	RU	Water Use Sector	No. of Users	(M m3/a)		Agriculture: Irrigation Agriculture: Watering						
		Agriculture: Aquaculture	3	0.001	Kuilsrivier Stellenbosch	Livestock						
		Agriculture: Irrigation	35	0.87		Industry (Non-Urban)						
	Fractured and Intergranular	Industry (Non-urban)	8	0.05		Industry (Urban) Urban (Excluding						
	Basement	Industry (Urban)	11	0.27	Forstarius	Industrial &/Or						
Groundwater		Schedule 1	3	0.003	Leistenwei	Domestic)						
Use		Water Supply service	2	3.50	Blue Downs Stellenbosch-	Orakensteinberge O Schedule 1						
		Agriculture: Irrigation	38	1.06	Cape	Water Supply Service Total Registered						
		Agriculture: Watering Livestock	1	0.01	Flats (Somerse	Groundwater Use (M m³/a)						
	Primary /	Industry (Non-urban)	11	0.11	Strand	0 - 2 Steenbras 2 - 4						
	Intergranular Aquifers	Industry (Urban)	41	0.71	O							
		Recreation	1	0.02	۲ O	8 - 10						
		Schedule 1	4	0.03		Grabouw 10 - 20						
		Water Supply service	5	2.16	_5 km_	20 - 30						
	То	tal	163	8.79								

	GRU Name: Stellenbosch-Helderberg	
GRU	Main Towns: Stellenbosch and Somerset West	
	Total Area (km²): 571.29	
	Groundwater's contribution to baseflow was re-calculated using the aquifer specific basefle for this GRU is 7.60 M m ³ /a (see Section 4.4.1 for details).	w estimates from DWAF (2008b) based on equivalent recharge. The total discharge
	RU	Sum of Baseflow per component (M m ³ /a)
Discharge	Primary / Intergranular Aquifers	3.88
	Peninsula Aquifer	1.03
	Fractured and Intergranular Other (TMG)	0.02
	Fractured and Intergranular Basement	2.67
	Total	7.60
Water Quality	deposition of marine aerosols, recharge by coastal rainfall as well as dissolution and satt of Na and Cl ions due to increased groundwater residence time in the relatively low transmi granitic and clay rich shale and siltstone basement aquifer. No RQO have been established for the drainage regions in which this GRU falls. In born targeting the Tygerberg Formation, at least 50% of samples exceeded the ba concentrations for sulphate, EC, ammonia, nitrate + nitrite and orthophosphate. For this lift the adjusted water quality category is C, indicating that there is some localised contami which may impact the purpose for which groundwater is used. Anthropogenic impacts are from agriculture and industry, but exceedances are also due to naturally elevated salinity, are water quality concerns. In boreholes targeting the Cape Granite Suite, at least 50% of samples exceeded the ba concentrations for pH, ammonia, nitrate + nitrite and orthophosphate. For this lithlogy, the water quality category is C, indicating that there is some localised contamination, whice impact the purpose for which groundwater is used.	which seline a may Stellenbosch-Helderberg $1 - Ca-HCO_3 type$ $2 - Na-HCO_3 type$ 3 - Ca-Mg-Cl type $5 - Ca-SQ_4 type$ $6 - Na+HCO_3 type$ $5 - Ca-SQ_4 type$ $6 - Na+HCO_3 type$ 7 - Ga-Mg-Cl type $6 - Na+HCO_3 type$ 7 - Ga-Mg-Cl type 7

GRU Name: Stellenbosch-Helderberg

GRU Main Towns: Stellenbosch and Somerset West

Total Area (km²): 571.29

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
	Sulphate (mg/l)	10.20	7.70	338.40	111.00	73.05		E		
	Electrical conductivity (mS/m)	197.00	32.70	885.00	289.10	203.00		D		
	pH	7.08	6.72	7.18	6.96	6.98	-	В		
	Ammonia (mg/l)	0.04	0.02	0.09	0.05	0.05		D		
	Nitrate + nitrite (mg/l)	0.02	0.02	5.61	1.25	0.21		Е		
	Fluoride (mg/l)	2.35	0.05	2.61	1.10	0.67		В		
	Orthophosphate (mg/l)	0.01						D		
Stellenbosch-	Dissolved Aluminium (mg/l)	-	-	-	-	-	Na-Cl, Ca-	-	П	C
(Tygerberg)	Dissolved Arsenic (mg/l)	-	-	-	-	-	Mg-Cl	-	D	Ŭ
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		
	Dissolved Iron (mg/l)	-	-	-	-	-		-		
	Dissolved Lead (mg/l)	-	-	-	-	-		-		
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	14.80	2.00	289.80	35.00	5.9		В		
	Electrical conductivity (mS/m)	68.40	17.60	197.00	62.10	48.9		В		
	pН	7.00	6.41	7.48	6.90	7		С		
	Ammonia (mg/l)	0.04	0.04	0.11	0.10	0.05	_	E		
	Nitrate + nitrite (mg/l)	0.24	0.02	8.34	1.80	0.94		E		
	Fluoride (mg/l)	1.25	0.16	2.46	0.80	0.41	_	В		
	Orthophosphate (mg/l)	0.01					_	F		
Stellenbosch-	Dissolved Aluminium (mg/l)	-	-	-	-	-	Na-CI	-	П	C
Granite Suite)	Dissolved Arsenic (mg/l)	-	-	-	-	-		-	D	Ŭ
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		
	Dissolved Iron (mg/l)	-	-	-	-	-]	-		
	Dissolved Lead (mg/l)	-	-	-	-	-	1	-		
	Dissolved Manganese (mg/l)	-	-	-	-	-	1	-		
	Dissolved Mercury (mg/l)	-	-	-	-	-]	-		

	GRU Name: Stellenbosch-Helderberg									
GRU	Main Towns: Stellenbosch and Somerset West									
	Total Area (km ²): 571.29									
	The GRU is considered to have a Status Category of 'C' indicating m	Groundwater Availability Present oderate levels of localised conta	Status Category of 'C', indicating a mination, but little or no negativ	a moderately stressed aquifer, an e impacts apparent.	nd a Groundwater Quality Present					
Aquifer Stress	Recharge Volume (M m³/a)	Groundwater Use (M m³/a)	Groundwater Use (M m³/a) Stress Index Groundwater Availability Present Status Category Stat							
	41.52	8.81	0.21	С	С					

5.3.3. Paarl-Franschhoek GRU

	GRU Name: Paarl-Franschhoek
GRU	Main Towns: Paarl, Franschhoek
	Total Area (km2): 370.47
GRU Boundary Description	The Paarl-Franschhoek GRU is bound by the extent of the basement lithologies (the Cape Granite Suite and the Malmesbury Group) and its contact with the TMG on its eastern and southern edge. Portions of the G10D, G21E and G21D surface water quaternary catchment divides bound the GRU on its northern and western edge.
Resource Unit	Fractured and Intergranular Basement Aquifer
Quaternary Catchments	G10C, G10A and G10B
Description	The CRU comprises sequences of basement rocks, of the Malmesbury Group and the Cape Granite Suite, dominating the outcrop in the undulating northern and western areas. The Peninsula Formation of the TMG outcrops in the mountainous south-east and on the eastern boundary, with Quaternary cover such as the Springfontyn Formation and other younger Quaternary sediments infilling valleys, more extensively along the Berg River.

	GRU Name: Paarl-Fr	ranschhoek						
GRU	Main Towns: Paarl,	Franschhoek						
	Total Area (km2): 370.47							
Surface Water System	The main surface wat	ter system is the Berg	River (including the D	wars and Franschh	oek tributaries) that flow	rs north from the Berg	River Dam to St Hele	ena Bay.
Water Resource Classes & RQOs	The GRU falls entirel II. The portion of the Groundwater Resourd although there are 2 p in table below).	y within the Upper Ber GRU that falls within ce Class of II. There an priority biophysical rive	rg (D8) and has Wate n catchments G10A a re no priority EWR sit er nodes with TEC of (er Resource Class and G10B have a les within this IUA, C and D (see TEC	Biii3 Malmesbury C21E Paarl- Franschho G10C G10C C22C Drake C22C Drake	ek B B B B B B B B B B B B B		aarl- Franschhoek GRU Rivers Hydrotect Hydrotect Hydrotect Vaterbodies Priority Estuaries Quaternary catchment Priority Biophysical Nodes Yes Groundwater Resource Class III III III III III III III
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR
	Dº Llopor Porc		G10A	D8-R02	Berg	Bviii1	С	27
	Do Obber Beld	Ш	G10C	D8-R03	Berg	Biii3	D	53

	GRU Name: Paarl-F	ranschhoek										
GRU	Main Towns: Paarl, Franschhoek											
	Total Area (km2): 3	70.47										
Recharge	An estimated recharge of 26.61 M m ³ /a was determined from first-order recharge calculations using the Map-Centric Simulation method (see Section 4.2.3), and was selected as the estimated recharge value for the Aquifer Stress (Section 4.6.1.2) assessments. The average recharge rate equates to 72.21 mm/a based on the total GRU area. Additional recharge estimations are available in literature (See Section 4.2.3).											
. toona.go	Ме	ethod	Ar	rea (km²)	Recharge Volume (M m ³ /a)	Average Recharge Rate (mm/a)						
	Map Centric S	imulation Method	:	368.50	26.61	72.21						
	There are 268 registered groundwater users in this GRU with a combined groundwater use of <u>9.84 M m³/a</u> . Major groundwater use sectors include: Agriculture (irrigation), Industry (urban) and Water Supply Services which comprise 61.%1,15.1% and 14.7% respectively of total groundwater use volume per annum (see Section 4.3.3 for details).				Wellington Voë Malmesbury Paarl	Vlei-Slanghoek Paarl- Franschhoek O Towns GRU Rivers Water Use Sector • Agriculture: Aquaculture						
	RU	Water Use Sector	No. of Users	I otal Volume (M m³/a)		Agriculture: Irrigation Agriculture: Watering						
		Agriculture: Aquaculture	1	0.22	Wemmershoek	emmershoek Livestock Mining						
		Agriculture: Irrigation	33	0.90		Industry (Non-Urban)						
	Fractured and Intergranular	Agriculture: Watering livestock	3	0.10		Dam Urban (Excluding						
	Basement	Industry (Non-urban)	16	0.32		Domestic)						
		Industry (Urban)	7	0.17	Pearl	Recreation						
Groundwater Use		Schedule 1	1	0.01	Franschhoek	Schedule 1 Water Supply Service						
		Water Supply service	1	0.004		Total Registered Groundwater Use						
		Agriculture: Irrigation	1	0.07	Ber	g (M m³/a) 0 - 2						
		Agriculture: Irrigation	140	5.04	RM							
	Primary / Intergranular	Agriculture: Watering Livestock	7	0.08	Stellenbosch	4-6 6-8						
	Aquifers	Industry (Non-urban)	5	0.11	Stellenbosch-	10 - 20						
	Mountain Group	Industry (Urban)	34	1.31	5 km j Drakensteinberg	20 - 30						
	(Peninsula)	Schedule 1	9	0.06		30 - 50						
		Urban (Excluding industrial and/or domestic)	1	0.01								
		Water Supply service	9	1.44								
	Т	otal	268	9.84								

	GRU Name: Paarl-Franschhoek							
GRU	Main Towns: Paarl, Franschhoek							
	Total Area (km2): 370.47							
	Groundwater's contribution to baseflow was re-calculated using the aquifer specific b for this GRU is <u>4.73 M m³/a</u> (see Section 4.4.1 for details).	baseflow estimates from DWAF (2008b) based on equivalent recharge. The total discharge						
	RU	Sum of Baseflow per component (M m³/a)						
	Primary / Intergranular Aquifers	3.47						
Discharge	Nardouw Aquifer	0.00						
	Peninsula Aquifer	0.31						
	Fractured and Intergranular Other (TMG)	0.01						
	Fractured and Intergranular Basement	0.94						
	Total	4.73						
Water Quality	The main water type in Paari-Franschnoek is Na-CI. The Na-CI waters are due to an relatively low transmissivity of the granite and clay rich shale and siltstone baseme baseline, no other data exists for comparison and no water quality category has been concentrations indicate that pristine water quality conditions prevail. More monitoring $1 - Ca+NCO_3 type$ $3 - Ca+NCO_3 type$ $4 - Ca+NGCO_3 type$ $5 - Ca+SO_4 type$ $6 - Na-HCO_3 type$ $5 - Ca+SO_4 type$ $6 - Na-HCO_3 type$ 7 - Q 9 - Q 1 - Q 1 - Q 1 - Q 1 - Q $2 - Na-HCO_3 type$ $2 - Na-HCO_3 type$ $3 - Q - NCO_3 type$ $3 - Q - NCO_3 type$ 4 - Q - Q 4 - Q	the saturation of Na and Chores as a result of increased groundwater residence time in the entry aquifer. Only 1 sample exists for this GRU, thus although it can be used to establish a established. However, although agriculture is prevalent within the GRU, the low parameter of data is required to establish a more conclusive present status.						

	GRU Name: Paar	l-Franschhoek									
GRU	Main Towns: Paa	arl, Franschhoek									
	Total Area (km2)	: 370.47									
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
		Sulphate (mg/l)	2.00	2.00	2.00	-	-	_	-		
		conductivity (mS/m)	14.40	14.40	14.40	-	-		-		
		pH	7.04	7.04	7.04	-	-		-		
		Ammonia (mg/l)	0.06	0.06	0.06	-	-	_	-		
		(mg/l)	0.76	0.76	0.76	-	-		-	n/a	
		Fluoride (mg/l)	0.25	0.25	0.25	-	-	Na-Cl	-		
	Paarl- Franschhoek	Orthophosphate (mg/l)	0.10	0.10	0.10	-	-		-		
		Dissolved Aluminium (mg/l)	-	-	-	-	-		-		n/a
		Dissolved Arsenic (mg/l)	-	-	-	-	-		-		1Va
		Dissolved Chromium (mg/l)	-	-	-	-	-		-		
		Dissolved Iron (mg/l)	-	-	-	-	-		-		
		Dissolved Lead (mg/l)	-	-	-	-	-		-		
		Dissolved Manganese (mg/l)	-	-	-	-	-		-		
		Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	The GRU is consi Status cannot be	idered to have a Gi determined due to l	oundwater Avai imited data avai	ilability Present lability.	Status Category	/ of 'C', indicatin	ig a moderatel	y stressed a	quifer, and the	Groundwater	Quality Present
Aquifer Stress	Recharge (M m	volume 1³/a)	Groundwa (M m	ater Use ³/a)	Stre	ess Index	Groundwa St	ter Availability atus Category	Present G	Groundwater Quality Present	
	26.	61	9.8	4		0.37		С		N/A	
		I			1						

5.3.4. Malmesbury GRU

	GRU Name: Malmesbury						
GRU	Main Towns: Malmesbury and Melkbosstrand						
	Total Area (km2): 1603.5						
GRU Boundary Description	The Malmesbury GRU is bound by a combination of an interpolated basement geology extent (i.e., the Klipheuwel Group, the Cape Granite Suite and the Malmesbury Group) and the G22G, G10D, G22C, G22E, G10C, G10J, G10L, G10F and G21A surface water quaternary catchment divides on its northern, eastern and southern fringe. Portion of the CoCT (2020) aquifer model boundary i.e., the Atlantis GRU and the Table Bay coastline were used as the western extent of the GRU.						
Resource Unit	Fractured and Intergranular Basement Aquifer						
Quaternary Catchments	G201E, G21C, G21D, G21F and G21B						
Description	The GRU is underlain predominantly by Malmesbury Group intruded by Cape Granite Suite plutons, the latter forming higher rocky hills, in contrast to the generally weathered lower rolling hills. Groundwater flow is mainly restricted to weathered zones or granite scree slopes on the pluton flanks and little regional flow can be expected.						

	GRU Name: Malme	sbury							
GRU	Main Towns: Malm	esbury and Melkbo	sstrand						
	Total Area (km2): 1603.5								
Recharge	An estimated rechar and was selected as based on the total G	ge of <u>52.65 M m³/a</u> was the estimated recha RU area. Additional	vas determin arge value fo recharge es	ned from Firs or the Aquife stimations ar	st-order recharge c r Stress (Section (e available in litera	calculations using the Map-Centric S 4.6.1.2) assessments. The average ature (See Section 4.2.3).	Simulation method (see Section 4.2.3), e recharge rate equates to <u>32.90 mm/a</u> Average Recharge Rate		
	Meth	nod		Area (km ²)		(M m ³ /a)	(mm/a)		
	Map Centric Sim	ulation Method		1600.36		52.65	32.90		
	There are 245 registered groundwater users in groundwater use of <u>14.8 M m³/a</u> . Major groun Agriculture (irrigation), Agriculture (watering livesto comprise 67.5%, 17.0% and 12.4% respectively or per annum (see Section 4.3.3 for details)			this GRU ndwater use ck) and Indu total ground	with a combined sectors include stry (urban) which dwater use volume	Darling	Adimesbury Hermon Hermo		
	RU	Water Use Sector		Users	(M m ³ /a)	Greater Chat	sworth		
	Fractured and	Agriculture: Irrigation		78	5.44	Atlantis OPella Chatsworth	og Livestock ● Mining		
		Agriculture: Waterin	g livestock	18	0.67	Atlantis	aal Wellington Industry (Non-Urban)		
		Industry (Non-urban)		2	0.002	and a star	Industrial &/Or		
	Basement	Industry (Urb	oan)	19	1.44		Windmeul Recreation		
		Mining		1	0.003	Melkhosstrand Melmod	Water Supply Service Total Registered		
Groundwater Use		Schedule	1	4	0.01		Groundwater Use (M m³/a)		
		Water Supply s	ervice	1	0.01	5			
		Agriculture: Aqua	aculture	63	4.51	Durban	ville 6 - 8		
		Agriculture: Irri	gation	28	1.84	Kraaifontein	Stéllenbosch- Helderberg		
	Primary /	Agriculture: Waterin	g livestock	2	0.13	Bellville	30 - 50		
	Intergranular Aquifers	Industry (Non-	urban)	20	0.39				
		Industry (Urb	Industry (Urban)		0.02				
		Urban (Excluding industrial and/or domestic)		6	0.27				
		Water Supply s	ervice	1	0.01				
		Total		245	14.75				

	GRU Name: Malmesbury							
GRU	Main Towns: Malmesbury and Melkbosstrand							
	Total Area (km2): 1603.5							
	Groundwater's contribution to baseflow was re-calculated using the aquifer sp The total discharge for this GRU is <u>11.83 M m³/a</u> (see Section 4.4.1 for detail	pecific baseflow estimates from DWAF (2008b) based on equivalent recharge. s).						
	RU	Sum of Baseflow per component (M m³/a)						
Discharge	Primary / Intergranular Aquifers	4.49						
	Peninsula Aquifer	0.03						
	Fractured and Intergranular Other (TMG)	4.59E-03						
	Fractured and Intergranular Basement	7.30						
	Total	11.83						
Water Quality	The main water type in Malmesbury is Na-CI. The Na-CI waters are due to an time in the relatively low transmissivity clay rich shale and siltstone basem parameters except dissolved mercury, with 50% of samples exceeding the base EC, 1 for pH and 34 for nitrate + nitrite. Exceedances are the result of contamin of dissolved ions. The adjusted water quality category is B, indicating that low $\frac{1 - Ca-HCO_3 \text{ type}}{2 - Na-CI \text{ type}}$ $\frac{100}{3 - Ca-Na+HCO_3 \text{ type}}$ $\frac{100}{3 - Ca-Na+HCO_3 \text{ type}}$ $\frac{100}{6 - Na-HCO_3 \text{ type}}$ $\frac{100}{6 - Na-MCO_3 \text{ type}}$	d saturation of Na and Clions as a result of increased groundwater residence tent aquifer. Exceedances of baseline concentrations were observed for all seline for pH. Of the 149 samples collected, 5 samples exceeded the RQO for nation from agriculture and industry, but also naturally elevated concentrations levels of contamination exist, but largely natural conditions prevail.						

	GRU Name: Ma	Imesbury									
GRU	Main Towns: M	almesbury and	Melkbosstran	nd							
	Total Area (km)	2): 1603.5									
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
		Sulphate (mg/l)	172.57	1.50	360.70	63.47	33.3		Ă		
		Electrical conductivity (mS/m)	1549.90	29.66	211.0	220.90	107.9		А		
		рН	7.15	1.00	8.60	7.38	7.644		D		
		Ammonia (mg/l)	0.10	-	1.27	0.05	0.025		A	_	
	Malmesbury	(mg/l)	503.08	0.02	589.68	20.16	0.562		А		
		Fluoride (mg/l)	0.26	0.03	2.94	0.50	0.375		С		
		Orthophosphate (mg/l)	0.10	-	14.00	0.12	0.022	Na-Cl, Ca- Mg-Cl, Ca- SO4	А	_	
		Dissolved Aluminium (mg/l)	0.033	0.001	0.139	0.025	0.018		А	A	в
		Dissolved Arsenic (mg/l)	0.025	0.002	0.103	0.034	0.025		А	_	
		Dissolved Chromium (mg/l)	0.007	0.000	0.026	0.004	0.003		А	_	
		Dissolved Iron (mg/l)	0.014	0.002	1.892	0.031	0.003		А	_	
		Dissolved Lead (mg/l)	0.008	0.000	0.063	0.024	0.008		А	_	
		Dissolved Manganese (mg/l)	0.677	0.001	1.190	0.073	0.001		А		
		Dissolved Mercury (mg/l)	0.00	0.008	0.075	0.021	0.019		А		
	The GRU is co Quality Present	nsidered to have Status of 'B', ind	a Groundwate	er Availability F ed, low levels	Present Status of contamina	Category of 'C tion, but no n	?', indicating a egative impac	moderately	y stressed nt.	aquifer, and a	Groundwater
Aquifer Stress	Recharge (M m	e Volume n³/a)	Groundw (M m	ater Use n³/a)	Stre	ss Index	Ground Present	water Availa Status Cate	bility gory	roundwater Qu Status Ca	ality Present tegory
	52.65		14.	75		0.28		С		В	
		•									

5.3.5. Wellington GRU

	GRU Name: Wellington
GRU	Main Towns: Wellington
	Total Area (km²): 1087.0
GRU Boundary Description	The Wellington GRU is bound by a combination of an interpolated basement geology extent (i.e., the Cape Granite Suite and Malmesbury Group), and the G21E, G21C, G10C and G10J surface water quaternary catchment divides on its western and southern edge, including portions of the Berg River. The contact between the TMG and the basement lithologies, as well as portions of the G10D surface water quaternary catchment divide on the eastern edge.
Resource Unit	Fractured and Intergranular Basement Aquifer
Quaternary Catchments	G10D and G10F
Description	The GRU is dominantly composed of the Malmesbury Group, intruded by Cape Granite Suite plutons, the latter forming higher rocky hills, in contrast to the generally weathered lower rolling hills. Groundwater flow is mainly restricted to weathered zones, deeper structures or granite scree slopes on the pluton flanks and little regional flow can be expected. Relatively thin and laterally discontinuous outcrops of the Sandveld Group scatter the GRU. Groundwater mostly discharges to streamflow along the various streams and perennial rivers. The dominant land use in the area is agriculture.

	GRU Name: Welling	ton							
GRU	Main Towns: Welling	gton							
	Total Area (km ²): 10	87.0							
Surface Water System	The main surface water system is the Berg River (including many tributaries such as the Fish, Kompanjies, Limiet, Doring and Krom). This GRU also hosts the second largest reservoir of the Western Cape Water Supply System – the Voëlvlei Dam. Other smaller dams are also situated in this GRU including Kersfontien Dam.								
	The GRU falls within the Lower Berg (B1) and Middle Berg (D9) IUAs and both have Water Resource Class III. The GRU has no Groundwater Resource Class. There are no priority EWR sites within this IUA, although there are 2 priority biophysical nodes (see TECs in table below).								
Water Resource Classes & RQOs			G21D G21D G21D G21D G21D G21D G21D G21D	GIOJ B4 GBVII5 G	ndekuil Basin Hi Biii4 tof Voëlvlei-Slangho Voëlvlei-Slangho Biii4 tof Biii4 tof Biii4 tof Hi Bii Hi Hi Hi Bii Hi Bii Hi Bii Hi Hi Bi Hi Bii Hi Bi Hi Bi Hi Bi Bii Hi Bi Hi Bi Hi Bi Bi Bi Hi Bi Bi Hi Bi Bi Hi Bi Bi Bi Bi Bi Bi Bi Hi Bi Bi Hi Bi Bi Bi Bi Bi Hi Bi Bi Bi Hi Bi Hi Bi Bi Bi Hi Bi Hi HI Bi Bi HI HI Bi Bi Bi HI HI Bi Bi Bi Bi Bi Bi Bi HI Bi Bi Bi Bi Bi Bi Bi Bi Bi Bi Bi Bi Bi	Wellington GRU	es uaries sical		
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR	
			G10D	D9-R05	Kromme	Bvii3	D	89	
	D9 Mildale Berg	111	G10D	D9-R06	Berg	Bvii5	D	49	

	GRU Name: Welli	ngton				
GRU	Main Towns: Well	ington				
	Total Area (km ²):	1087.0				
Recharge	An estimated recha as the estimated r Additional recharge	arge of <u>39.49 M m³/a v</u> echarge value for the e estimations are ava	was determined fro Aquifer Stress (ilable in literature (om First-order recharge ca Section 4.6.1.2) assessm (See Section 4.2.3).	lculations using the Map-Centric Simulation ents. The average recharge rate equates t	method (see Section 4.2.3), and was selected to <u>36.95 mm/a</u> based on the total GRU area.
	Method			Area (km²)	Recharge Volume (M m ³ /a)	Average Recharge Rate (mm/a)
	Map Centric Simulation Method			1068.81	39.49	36.95
Groundwater Use	There are 117 r groundwater use o (irrigation) and Agr the total groundwa RU Fractured and Intergranular Basement Primary Intergranular	egistered groundwat f 4.48 M m³/a . Major iculture (livestock wa ter use volume per ar Water Use Sector Agriculture: Aquaculture Agriculture: Irrigation Agriculture: Watering livestock Industry (Non- urban) Industry (Urban) Recreation Schedule 1 Water Supply service Agriculture: Watering livestock	er users in this groundwater use a tering), which make num (see Section No. of Users 1 70 5 2 11 1 6 3 14	GRU with a combined sectors include Agriculture (e up a combined 89.8% cm/state). Total Volume (M m³/a) 0.16 3.08 0.26 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00	Aliddle-Lower Berg Northern Swartland Malmesbury Malmesbury Wellington Wellington	 Wellington GRU GRU Rivers Water Use Sector Agriculture: Aquaculture Agriculture: Watering Livestock Mining Industry (Non-Urban) Industry (Urban) Urban (Excluding Industrial &/Or Domestic) Recreation Schedule 1 Water Supply Service Total Registered Groundwater Use (M m³/a) D - 2 2 - 4 4 - 6 6 - 8 8 - 10
	Aquifers	Industry (Non- urban)	1	0.06	5 km	10 - 20 20 - 30 30 - 50
	Т	Industry (Urban)	3	0.12		

	GRU Name: Wellington	
GRU	Main Towns: Wellington	
	Total Area (km²): 1087.0	
	Groundwater's contribution to baseflow was re-calculated using the aquifer specific bas for this GRU is 7.95 M m³/a (see Section 4.4.1 for details).	eflow estimates from DWAF (2008b) based on equivalent recharge. The total discharge
	RU	Sum of Baseflow per component (M m³/a)
Discharge	Fractured Peninsula Aquifer	0.06
	Primary/Intergranular	2.82
	Fractured and Intergranular Basement	5.06
	Total	7.95
Water Quality	The main water type in Wellington is Na-Cl. The Na-Cl waters are due to and saturatio low transmissivity clay rich shale and siltstone basement aquifer. Exceedances of bas been established for this GRU. Nutrient exceedances are the result of contamination contamination exist, but largely natural conditions prevail.	n of Na and Cl ions as a result of increased groundwater residence time in the relatively eline concentrations were observed for ammonia and orthophosphate. No RQOs have from agriculture. The adjusted water quality category is B, indicating that low levels of

	GRU Name: Well	ington									
GRU	Main Towns: We	llington									
	Total Area (km ²)	: 1087.0									
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
		Sulphate (mg/l) Electrical conductivity (mS/m)	118.00 202.00	4.30 25.60	118.00 202.00	42.20 85.77	4.3 29.7	_	-		
		pH Ammonia (mg/l)	7.56 0.14	7.03 0.05	7.56 0.21	7.33 0.13	7.4 0.142		- B		
	Wellington	Nitrate + nitrite (mg/l)	1.39	1.26	1.39	1.31	1.278	Na-Cl	-	В	в
		Orthophosphate (mg/l)	0.01	0.01	0.14	0.05	0.011		В		
		Dissolved Aluminium (mg/l)	-	-	-	-	-		-		
		(mg/l) Dissolved	-	-	-	-	-		-		
		Dissolved Iron (mg/l)	-	-	-	-	-		-		
		Dissolved Lead (mg/l)	-	-	-	-	-		-		
		Manganese (mg/l) Dissolved Mercury	-	-	-	-	-		-		
		(mg/l)	-	-	-	-	-		-		
	The GRU is cons Present Status of	idered to have a G 'B', indicating l oca	roundwater Avai lised, low level s	lability Present S s of contaminat	Status Category t ion, but no neç	of 'B', indicating jative impacts :	g an unstressed apparent.	l or slightly	stressed aqui	fer, and a Grou	Indwater Quality
Aquiler Stress	Recharge (M m	e Volume 1³/a)	Groundwa (M m	ater Use ³/a)	Stre	ess Index	Groundwa	Groundwater Availability Present Status Category		Groundwater Quality Present	
	39.	49	4.4	8		0.11		В		В	

5.3.6. Tulbagh GRU

	GRU Name: Tulbagh
GRU	Main Towns: Tulbagh
	Total Area (km ²): 291.21
GRU Boundary Description	The Tulbagh GRU is bound by the extent of the basement lithology (i.e., the Malmesbury Group) and its contact with the TMG on its northern, eastern and western edge. The southern boundary is marked by the Berg catchment (i.e., the H10F surface water quaternary catchment divide).
Resource Unit	Fractured and Intergranular Basement Aquifer
Quaternary Catchments	G10E and G10G
Description	This area is predominantly underlain by Malmesbury Group with thin and discontinuous Cenozoic cover in only a few places, such as gravel terraces from the palaeo Breede River, in the Klein Berg cathement. In the east of the GRU, the Tulbagh Valley is bounded on east, west and north by slopes of the TMG (nedominantly Peninsula Formation). The western boundary of the Tulbagh valley (Waterval Mountains Nature Reserve) comprises of a syncline of the TMG, exposing the Nardouw Sub-group in the centre.
Surface Water System	The Klein-Berg River is the major surface water system in this GRU which combines with its tributaries, namely the Boontjies, Waterval, Brakkloof and Knolvlei rivers.

	GRU Name: Tulbagh							
GRU	Main Towns: Tulbagh							
	Total Area (km ²): 291.21							
Water Resource Classes & RQOs	The GRU falls entirely within the Berg Tribut Resource Class of II, while the rest of the GR	aries (C5) IUA and has a Water Resource Uhas no Groundwater Resource Class.	ce Class II. The portions of the GRU that far there are no EWR sites or priority biophysic Tulbagh GRU Rivers Hydrotect Hydrotect Faults Waterbodies Priority Estuaries Quaternary catchment Priority Biophysical Nodes Yes Groundwater Resource Class II Water Resources Class II Water Resources Class II II Water Resources Class II II II II II II II II II	Il within catchment G10E has Groundwater cal nodes in this GRU.				
Recharge	An estimated recharge of <u>10.87 M m³/a</u> was determined from First-order recharge calculations using the Map-Centric Simulation method (see Section 4.2.3), and was selected as the estimated recharge value for the Aquifer Stress (Section 4.6.1.2) assessments. The average recharge rate equates to <u>37.31 mm/a</u> based on the total GRU area. Additional recharge estimations are available in literature (See Section 4.2.3).							
. toollargo	Method	Area (km²)	Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)				
	Map Centric Simulation Method	291.38	10.87	37.31				

	GRU Name: Tulbag	gh		
GRU	Main Towns: Tulba	agh		
	Total Area (km ²): 2	91.21		
	There are 81 register use of <u>3.78 M m³/a</u> . GRU, which makes Section 4.3.3 for de	ered groundwater users Agriculture (irrigation) up 97.6% of the total etail).	s in this GRU with a is the major ground groundwater use v	combined groundwat water use sector for th rolume per annum (se
	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)
		Agriculture: Irrigation	30	2.00
Groundwater Use	Fractured and	Industry (Non- urban)	1	0.0004
	Basement	Schedule 1	1	0.001
		Water Supply service	2	0.01
	Primary / Intergranular	Agriculture: Irrigation	38	1.69
		Agriculture: Watering Livestock	2	0.01
		Industry (Non- urban)	3	0.01
	Aquifers	Industry (Urban)	2	0.04
		Schedule 1	1	0.001
		Water Supply service	1	0.01
	Т	otal	81	3.78
	Groundwater's cont for this GRU is <u>3.64</u>	ribution to baseflow wa <u>M m³/a</u> (see Section o	s re-calculated usir 4.4.1 for details).	ng the aquifer specific
Diagharra			RU	
Discharge		Primary / Interg	granular Aquifers	
		Fractured Pe	eninsula Aquifer	
		Fractured and Inter	granular Other (TMG)	
			ngianulai basement	

	GRU Name: Tulbagh									
GRU	Main Towns: Tulbagh									
	Total Area (km²): 291.21									
Water Quality	No water quality data									
Aquifer Stress	The GRU is considered to have a Groundwater Availability Present Status Category of 'C', indicating a moderately stressed aquifer , and the Groundwater Quality Present Status could not be determined due to limited data availability.									
	Recharge Volume (M m³/a)	Groundwater Use (M m³/a)	Stress Index	Groundwater Availability Present Status Category	Groundwater Quality Present Status Category					
	10.87	3.78	0.35	С	N/A					

5.3.7. Eendekuil Basin GRU

	GRU Name: Eendekuil Basin
GRU	Main Towns: Porterville and Piketberg
	Total Area (km ²): 939.92
GRU Boundary Description	The Eendekuil Basin GRU is bound by the extent of the basement lithologies (i.e., the Malmesbury Group) and its contact with the TMG outcrop on the eastern flank of the GRU and portions of the Aurora-Piketberg fault zone in the north. The Berg and Klein Berg rivers form the south/south-western boundaries. The preferential groundwater flow direction and inferred discharge directions towards both the north and south were considered to bound the GRU.
Resource Unit	Fractured and Intergranular Basement Aquifer
Quaternary Catchments	G10H, G10J, G10F and G10K
Description	This GRU is mainly composed of the Malmesbury Group with some outcrops of the Klipheuwel Group making up the basement lithology. Some Quaternary-recent sediment deposits from the weathering of the TMG mountains to the east of the GRU and transported by the Vier-en-Twintig River, overly the basement in places.

	GRU Name: Eendekuil Basin										
GRU	Main Towns: Porterville and Piketberg										
	Total Area (km²): 939.92										
Surface Water System	The western edge of the GRU has been delineated along the Berg River, which is the main surface water system in the GRU. Other Surface water systems include the Misverstand Dam, which is fed by multiple rivers originating the mountains areas of the Groot Winterhoek, including the Krom, Pyls, Assegaaibosspruit, Jakkalskloof, Bothmankloof and Vier-en_Twintig rivers.										
	The GRU falls entirely within the Lower Berg (B4) and has a Water Resource Class III and Groundwater Resource Class of III for the portions of the GRU that fall within catchment G10H. The rest of the GRU has no groundwater Resource Class. There are no EWR sites within this IUA nor any priority biophysical nodes.										
Water Resource Classes & RQOs		GION GION GION GION GION GION GION GION	 Eendekuil Basin GRU Rivers Hydrotect Faults Waterbodies Priority Estuaries Quaternary catchment Priority Biophysical Nodes Yes Groundwater Resource Class II III III II II II II 								
Recharge	An estimated recharge of 21.88 M m ³ /a was determined from first-order recharge calculations using the Map-Centric Simulation method (see Section 4.2.3), and was selected as the estimated recharge value for the Aquifer Stress (Section 4.6.1.2) assessments. The average recharge rate equates to 23.35 mm/a based on the total GRU area. Additional recharge estimations are available in literature (See Section 4.2.3).										
Roonargo	Method	Area (km²)	Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)							
	Map Centric Simulation Method	936.94	21.88	23.35							

	GRU Name: Eende	kuil Basin										
GRU	Main Towns: Porte	rville and Piketberg										
	Total Area (km ²): 939.92											
	There are 33 register use of <u>4.85 M m³/a</u> . Agriculture (irrigatio groundwater use vol	ared groundwater users Major groundwater use n), which comprise 61 ume per annum (see Se	in this GRU with a sectors include Wat .9% and 36.7% re	combined groundwater er Supply Services and espectively of the total ils).	Eendekuil Ba	sin						
	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)	De Hoek Aquaculture Agriculture: Irri Agriculture: Irri	gation						
		Agriculture: Irrigation	19	1.52	Misverstand Winterhoek O Agriculture: Wa	tering						
	Fractured and Intergranular Basement	Agriculture: Watering livestock	3	0.06	Porterville	Jrban) ı)						
		Industry (Urban)	3	0.01	Urban (Excludii Industrial &/Or	ng						
Groundwater	Primary /	Agriculture: Irrigation	7	0.26	Middle-Lower Basin • Domestic) • Recreation							
026	Intergranular Aquifers	Water Supply service	1	3.00	Berg	Service						
		otal	33	4.85	Moorreesburg Groundwater Use Northern Tulbagh 5 km Wellington							
	Groundwater's contr for this GRU is <u>4.53</u>	ibution to baseflow was r <u>M m³/a</u> (see Section 4. 4	re-calculated using t 4.1 for details).	he aquifer specific basefl	eflow estimates from DWAF (2008b) based on equivalent recharge. The total disc	harge						
		RU	J		Sum of Baseflow per component (M m³/a)							
Discharge		Fractured Penin	nsula Aquifer		0.00							
		Primary / Inte	ergranular		0.96							
			al		4.53							
				L]						

	GRU Name: Eendekuil Basin
GRU	Main Towns: Porterville and Piketberg
	Total Area (km ²): 939.92
Water Quality	The main water type in Eendekuil Basin is Na-Cl. The Na-Cl waters are due to and saturation of Na and Cl ions as a result of increased groundwater residence time in the featively low transmissive, buy inclusion allistone baselines concentrations were observed for multiple parameters, with more than 60% of samples exceeding baselines for sulphate, EC, nitrate + nitrite and fluoride. Two of the four samples collected exceed the RQO for pH. The adjusted water quality category is C, indicating that moderate levels of contamination exist.

	GRU Name: Een	dekuil Basin												
GRU	Main Towns: Por	Main Towns: Porterville and Piketberg												
	Total Area (km ²):	Total Area (km²): 939.92												
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category			
		Sulphate (mg/l)	52.60	7.30	219.00	91.19	79.55		E					
		Electrical conductivity (mS/m)	205.00	42.10	583.00	286.01	233		D					
		pH	8.20	7.86	8.45	8.14	8.135		С					
		Ammonia (mg/l)	0.02	0.02	0.05	0.02	0.02	_	A	_				
		Nitrate + nitrite (mg/l)	0.84	0.04	5.39	1.38	0.855		С					
		Fluoride (mg/l)	0.94	0.20	1.87	0.85	1.005		D					
	Eendekuil Basin	Orthophosphate (mg/l)	0.01	0.01	0.02	0.01	0.007	A Na-Cl, Ca- Mg-Cl, Ca- SO4 - -	А					
		Dissolved Aluminium (mg/l)	-	-	-	-	-		-					
		Dissolved Arsenic	-	-	-	-	-		-	C	C			
		Dissolved Chromium (mg/l)	-	-	-	-	-		-	-				
		Dissolved Iron (mg/l)	-	-	-	-	-		-	_				
		Dissolved Lead (mg/l)	-	-	-	-	-		-					
		Dissolved Manganese (mg/l)	-	-	-	-	-		-					
		Dissolved Mercury (mg/l)	-	-	-	-	-		-					
		(***3(*))		•				1	I					
Aquifor Street	The GRU is cons Status of 'C', indic	idered to have a G ating moderate le	Froundwater Ava	ilability Present d contaminatio	Status Categor n, but little or r	y of 'C', indication of 'C', indication of 'C', indication of the second structure in the second structure of the second struc	ing a moderate bacts apparent.	ely stressed	aquifer, and	a Groundwater	Quality Present			
	Recharge (M m	volume ³/a)	Groundw (M m	ater Use ³/a)	Stre	ess Index	Groundwar	ter Availability atus Category	Present	Groundwater Qu Status Ca	uality Present			
	21.	88	4.8	5		0.22		С		С	<u><u></u></u>			

5.3.8. Middle-Lower Berg GRU

	GRU Name: Middle-Lower Berg										
GRU	Main Towns: Moorreesburg and Aurora										
	Total Area (km²): 148.59										
GRU Boundary Description	The Middle-Lower Berg GRU is bound by portions of the G21C, G10L and G10F surface water quaternary catchment divides on its south-western to south-eastern edge. Portions of the Aurora-Piketberg fault zone and the Berg and Klein Berg rivers on the eastern edge. The TMGs contact with interpolated basement lithologies of the Malmesbury Group, as well as portions of the Berg catchment boundary separate the Middle-Lower Berg GRU from the Piketberg GRU on its north-eastern border. The Adamboerskraal aquifer model boundary (SRK, 2004) and the St Helena Bay coastline forms the north/north-western boundary.										
Resource Unit	Fractured and Intergranular Basement Aquifer										
Quaternary Catchments	G10J, G30A, G10K and G10M										
Description	This GRU is mainly composed of the Malmesbury Group basement lithology as well as some Quaternary-recent sediment deposits. To the north-west, laterally continuous Sandveld Group sediments dominate the GRU.										

	GRU Name: Middle-I	ower Berg										
GRU	Main Towns: Moorre	esburg and Aurora										
	Total Area (km²): 148.59											
Surface Water System	The Berg Estuary starts in the north-western corner of this GRU and forms a major surface water system. The Kuilders, Boesmans and Platkloof rivers, originating in the mountainous Piketberg area, discharge into the Berg River. Other water systems include the Soutkloof and Sand rivers.											
Water Resource Classes & RQOs	The GRU falls within t Resource Class III ar catchment G10M has having no Groundwat IUA, although there a as portions of the Ber	he Lower Berg (B4) ar hd II respectively. On Groundwater Resou er Resource Class. TI re two priority biophys g (Groot) priority estua	nd Berg Estuary (A1) I ly portions of the A1 rce Class of II, with th here are no priority EV ical nodes, both with ary.	UAs and has Water IUA that fall within he rest of the GRU WR sites within this a TEC of D, as well	Adamboer Berg River (Groot) Langebaan Road A2 Given A3 Darling 5 km	Piketberg skraal G10K B4 Soutkloof B4 Sout Sout-Krom	Pyls Krom CtOH Niddle-Lower Berg	Middle-Lower Berg GRU Rivers Hydrotect Faults Vaterbodies Priority Estuaries Quaternary catchment Priority Biophysical Nodes Yes Groundwater Resource Class II III Water Resources Class II III III III III III III				
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR				
	D41 even Derr		G10J	B4-R09	Berg	Bvii6	D	52				
	B4 Lower Berg	111	G10K	B4-R10	Berg	Bvii12	D	51				
	A1 Berg Estuary		G10M	A1-E01	Berg (Groot)	Bxi1	С	52				

	GRU Name: Middle	-Lower Berg										
GRU	Main Towns: Moor	eesburg and Aurora										
	Total Area (km²): 148.59											
Recharge	An estimated recharge of <u>42.49 M m³/a</u> was determined from first-order recharge calculations using the Map-Centric Simulation method (see Section 4.2.3), and was selected as the estimated recharge value for the Aquifer Stress (Section 4.6.1.2) assessments. The average recharge rate equates to <u>28.61 mm/a</u> based on the total GRU area. Additional recharge estimations are available in literature (See Section 4.2.3).											
rteonarge	Μ	ethod	Area (km²)		Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)						
	Map Centric S	imulation Method		1485.40	42.49	28.61						
	There are 32 register use of <u>2.23 M m³/a.</u> this GRU, which ma (see Section 4.3.3 f	red groundwater users Agriculture (irrigation kes up 97.5% of the or detail).	in this GRU with a c) is the major grour total groundwater u	combined groundwater ndwater use sector for se volume per annum	Atom of the state		Idle-Lower Berg Fowns GRU Rivers er Use Sector					
	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)	• Piketberg		Agriculture: Aquaculture					
	Fractured and	Agriculture: Irrigation	5	0.09	Adamboerskraal	Basin o A	Agriculture: Watering Livestock					
	Intergranular	Industry (Urban)	1	0.0003		De Hoek	ndustry (Non-Urban)					
	Basement	Water Supply service	1	0.06	Middle-Lower		ndustry (Urban) Jrban (Excluding ndustrial &/Or					
Groundwater Use	Primary / Intergranular Aquifers	Agriculture: Irrigation	25	2.08	Road Berg		Domestic) Recreation Schedule 1					
	Тс	otal	32.00	2.23	Hopefield	Tota	I Registered					
					Northern Swartland	Wellington	Indwater Use 1 ² /a) 2 - 4 4 - 6 3 - 8 3 - 10 10 - 20 20 - 30 30 - 50					

	GRU Name: Middle-Lower Berg								
GRU	Main Towns: Moorreesburg and Aurora								
	Total Area (km²): 148.59								
	Groundwater's contribution to baseflow was re-calculated using the aquifer specific ba for this GRU is <u>3.57 M m³/a</u> (see Section 4.4.1 for details).	aseflow estimates from DWAF (2008b) based on equivalent recharge. The total discharge							
Discharge	RU	Sum of Baseflow per component (M m ³ /a)							
	Primary / Intergranular Aquifers	0.73							
	Fractured Peninsula Aquifer	0.01							
	Fractured and Intergranular Other	4.22E-03							
	Fractured and Intergranular Basement	2.82							
	Total	3.57							
Water Quality	The main water type in the Middle-Lower Berg is Na-Cl. The Ma-Cl Waters are due to the relatively low transmissivity clay rich shale and siltstone basement aquifer. Exceeds samples exceeding the baseline for pH, ammonia, fluoride and orthophosphate. Of th + nitrite. Exceedances are the result of contamination from agriculture, but also nature indicating that moderate levels of contamination exist.	and saturation of Na and CI lons as a result of increased groundwater residence time in eadances of baseline concentrations were observed for multiple parameters, with 50% of e 46 samples collected, 4 samples exceeded the RQO for EC, 12 for pH and 3 for nitrate ally elevated concentrations of dissolved ions. The adjusted water quality category is C, e-Lower Berg 100 100 100 100 100 100 100 10							

GRU Name: Middle-Lower Berg

GRU Main Towns: Moorreesburg and Aurora

42.49

2.23

Total Area (km²): 148.59

	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentratio	water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category	
		Sulphate (mg/l)	342.80	3.52	799.60	216.13	196.9		Ă			
		Electrical conductivity (mS/m)	841.00	20.68	1212.00	601.50	636.0		А			
		рН	7.63	3.11	8.71	7.56	7.7		D			
		Ammonia (mg/l)	0.02	0.02	1.37	0.10	0.042		D			
		Nitrate + nitrite (mg/l)	6.16	0.02	24.96	3.72	1.237		А			
		Fluoride (mg/l)	0.57	0.17	2.22	0.69	0.673		D		С	
		Orthophosphate (mg/l)	0.01	-	0.13	0.02	0.013		E	C		
	Middle-Lower Berg	Dissolved Aluminium (mg/l)	-	0.01	0.028	0.019	0.019	No Cl	-			
		Dissolved Arsenic (mg/l)	-	0.002	0.025	0.014	0.014	Na-Ci	-			
		Dissolved Chromium (mg/l)	-	0.002	0.012	0.007	0.007		-			
		Dissolved Iron (mg/l)	-	0.002	0.021	0.012	0.012		-			
		Dissolved Lead (mg/l)	-	0.002	0.008	0.005	0.005		-			
		Dissolved Manganese (mg/l)	-	0.001	0.001	0.001	0.001		-			
		Dissolved Mercury (mg/l)	-	0.00	0.00	0.00	0.00		-			
	The GRU is cor Present Status	nsidered to have a of 'C', indicating	a Groundwater moderate leve	Availability Pre	sent Status Cat contaminatior	egory of 'B', ind n, but little or n	icating an u i o negative i	nstressed or sligh impacts apparent.	tly stressed a	quifer, and a Gr	oundwater Quali	ty
Aquifer Stress	Rechar (N	rge Volume I m³/a)	Gro	oundwater Use (M m³/a)		Stress Index		Groundwater Availa Status Cate	bility Present	Groundwater Status	Quality Present	

0.05

В

С

5.3.9. Northern Swartland GRU

	GRU Name: Northern Swartland									
GRU	Main Towns: None									
	Total Area (km²): 1262.87									
GRU Boundary Description	The Northern Swartland GRU is bound by a combination of an interpolated basement lithology extent the Cape Granite Suite and the Malmesbury Group and portions of the G21C, G21D, G10J and G10K surface water quaternary catchment divides on its northern, eastern, and southern borders. Along the western edge of the GRU, the Colenso Fault, portions of the Modder River and the contact between Springfontyn Formation and the basement lithologies creates the south-western/western edge of the GRU. The Sout River marks western/north-western boarder of the Northern Swartland GRU.									
Resource Unit	Fractured and Intergranular Basement Aquifer									
Quaternary Catchments	G10L									
Description	This GRU is formed by basement Malmesbury Group and various plutons of the Cape Granite Suite. Laterally continuous Sandveld Group sediments as well as fluvial sediments from ephemeral streams also dominate the GRU.									

	GRU Name: Norther	n Swartland										
GRU	Main Towns: None											
	Total Area (km²): 1262.87											
Surface Water System	The general surface with the general surface with the sur	The general surface water flow direction is from the south-east to north-west. Numerous tributaries including the Sout, Sout-Krom and Groen rivers converge into the Sout River which feeds into the Berg River.										
	The GRU falls almost that fall within the G2 Berg (Groot) estuary	entirely within the Lov 1D catchment, which I with a TEC of C.	ver Berg (B4) IUA, ha has a Groundwater Ro	s a Water Resource C esource Class of III. T	Class of III and no Grou here are no priority EV	Undwater Class for mo WR sites within this IL Northern Swartl	est of the GRU, except IA, although contains	for the small portions portions of the priority				
Water Resource Classes & RQOs			Elandsfo Create	A Contern Swartland Darling Modder	K Akloof Sour Sour Sour Sour Sour By1 Malmesbury	GRU GRU Rivers Hydrotect Faults Vaterbodies Priority Estu Quaternary catchment Priority Biophysi Nodes Yes Groundwater Resource Class III Water Resources Class III III III	aries cal					
	IUA	Water Resource Class	Quaternary Catchment	RU	Resource Name	Biophysical Node	TEC	nMAR				
	A1 Berg Estuary	II	G10M	A1-E01	Berg (Groot)	Bxi1	С					

	GRU Name: Northern	Swartland				
GRU	Main Towns: None					
	Total Area (km ²): 126	2.87				
Recharge	An estimated recharge as the estimated recha Additional recharge es	of <u>31.85 M m³/a</u> was du arge value for the Aqui timations are available i od	etermined from first-o ifer Stress (Section 4 in literature (See Sec Area (k	rder recharge calcula 4.6.1.2) assessments tion 4.2.3). m ²)	tions using the Map-Centric Simulation m . The average recharge rate equates to Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)
	Map Centric Sim		1257.0	55	51.65	
	There are 19 registere of 1.8 M m³/a . Major g (urban) which compris per annum (see Sectio	d groundwater users in roundwater use sectors e 72.3% and 19% resp on 4.3.3 for details).	this GRU with a com s include Agriculture ectively of the total gr	bined groundwater u (irrigation) and Indus roundwater use volur Total Volume	Hopefield Oudekraalfontein	Middle-Lower Berg
	RU	Water Use Sector	No. of Users	(M m³/a)	TI	Agriculture: Irrigation
	Fractured and Intergranular Basement	Agriculture: Irrigation	3	0.65	Elandsfontein •	Moorreesburg
		Agriculture: Irrigation	6	0.65		Urban (Excluding
Groundwater	Primary / Intergranular Aquifers	Agriculture: Watering livestock	5	0.16	Northern • Swartland	Domestic) • Recreation
Use		Industry (Urban)	5	0.34		Water Supply Service Total Begistered
	То	tal	19	1.80		• Groundwater Use
					Darling Parling Yzerfontein 5 km,	(M m ⁷ /a) 0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 20 20 - 30 20 - 30 30 - 50
	GRU Name: Northern Swartland					
---------------	---	---	---	--		
GRU	Main Towns: None					
	Total Area (km²): 1262.87					
	Groundwater's contribution to baseflow was re-calcula for this GRU is 0.02 M m ³ /a (see Section 4.4.1 for det	ted using the aquifer specific base tails).	eflow estimates from DWAF (200	08b) based on equivalent recharge. The total discharge		
Discharge	RU		Sum of B	aseflow per component (M m³/a)		
Discharge	Primary / Intergranular Aqui	fers		2.86E-03		
	Fractured and Intergranular Ba	sement		0.02		
	Total			0.02		
Water Quality	The main water type in Northern Swartland is Na-Cl. T relatively low transmissivity clay rich shale and siltste samples exceeding the baseline for pH and nitrate + ni are the result of contamination from agriculture, but als levels of contamination exist.	The Na-CI waters are due to and some basement aquifer. Exceedaring trite. Of the 31 samples collected so naturally elevated concentrations Northern S 1 - Ca-HCO3 type 2 - Na-CI type 3 - Ca-Na-HCO3 type 4 - Ca-Mg-CI type 5 - Ca-SO4 type 6 - Na-HCO3 type 4 - Ca-Mg-CI type 5 - Ca-SO4 type 6 - Na-HCO3 type 6 - Na-HCO3 type 6 - Na-HCO3 type 7 - Ca-Mg-CI type 6 - Na-HCO3 type 7 - Ca-Mg-CI type 7 -	saturation of Na and CI ions as a faces of baseline concentrations , 5 samples exceeded the RQO ns of dissolved ions. The adjuster swartland 100 80 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70	a result of increased groundwater residence time in the were observed for multiple parameters, with 50% of for EC, 1 for pH and 3 for nitrate + nitrite. Exceedances ed water quality category is C, indicating that moderate		

	GRU Name: Northern Swartland											
GRU	Main Towns:	None										
	Total Area (kr	n²): 1262.87										
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentratior	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category	
		Sulphate (mg/l)	114.70	7.90	484.70	140.03	114.7		C			
		Electrical conductivity (mS/m)	532.00	49.70	1175.50	457.35	400		В			
		рН	7.59	5.55	8.13	7.52	7.7		D	-		
		Ammonia (mg/l)	0.02	0.02	0.52	0.06	0.02		В			
		(mg/l)	0.87	0.02	21.53	3.48	0.962		D			
		Fluoride (mg/l)	0.72	0.15	1.25	0.63	0.7		С			
		Orthophosphate (mg/l)	0.01	-	0.11	0.02	0.014		D			
	Northern Swartland	Dissolved Aluminium (mg/l)	-	-	-	-	-	Na-Cl, Ca-Mg-	-	C	C	
		Dissolved Arsenic (mg/l)	-	-	-	-	-	CI	-	Ŭ	Ŭ	
		Dissolved Chromium (mg/l)	-	-	-	-	-		-			
		Dissolved Iron (mg/l)	-	-	-	-	-		-			
		Dissolved Lead (mg/l)	-	-	-	-	-		-			
		Dissolved Manganese (mg/l)	-	-	-	-	-		-			
		Dissolved Mercury (mg/l)	-	-	-	-	-		-			
	The GRU is co Present Status	onsidered to have s of 'C', indicating	e a Groundwate 1 moderate lev e	r Availability Pre els of localised	esent Status Ca I contaminatio	tegory of 'B', ind n, but little or n	dicating an un no negative ir	stressed or slig npacts apparent	ntly stressed a	quifer, and a Gr	oundwater Qua	
Aquifer Stress	Recha (Recharge Volume (M m³/a) Groundwater Use (M m³/a) Stress Index				Groundwater Availability Present Status Category		ability Present egory	Groundwater Quality Present Status Category			
		31.85		1.8		0.06		В			С	

5.3.10. Darling GRU

	GRU Name: Darling
GRU	Main Towns: Darling and Mamre
	Total Area (km²): 408.81
GRU Boundary Description	The eastern flank of the Darling GRU is bound by the Colenso Fault, Modder River, and Groen River (i.e., the extent of Northern Swartland GRU). The extent of the Springfontyn Formation and its contact with the Cape Granite Suite forms the boundary between the Elandsfontein and Yzerfontein GRUs. Portions of the G21B surface water quaternary catchment divide and CoCT (2020) aquifer model boundary (i.e., the Atlantis GRU) was used as the Darling GRU boarder in the south.
Resource Unit	Fractured and Intergranular Basement Aquifer
Quaternary Catchments	G10L and G21A
Description	This GRU is dominantly composed of the Cape Granite Suite plutons that has intruded the Malmesbury Group shales. Several ephemeral streams emanate from the granite hills after heavy rain and deposit fluvial sediments to the north-east of the GRU.

	GRU Name: Darling							
GRU	Main Towns: Darling and Mamre							
	Total Area (km²): 408.81							
Surface Water System	The surface water systems flow both towards the north and south. The Modder and Dwars tributaries flow towards the coast, whereas the tributaries in the north of the GRU flow towards the Groen River in the Northern Swartland GRU.							
Water Resource Classes & RQOs	The GRU falls within the Lower Berg (B4) a this IUA nor any priority biophysical node.	nd West Coast (A3) IUAs and both have a V	Water Resource Class of III and no Ground Darling GRU GRU Rivers Hydrotect Faults Waterbodies Priority Estuaries Quaternary catchment Priority Biophysical Nodes Yes Groundwater Resource Class X II Water Resources Class III Water Resources Class III III Water Resources Class	water Class. There are no EWR sites within				
Deck	An estimated recharge of <u>9.95 M m³/a</u> was as the estimated recharge value for the Ad Additional recharge estimations are availab	determined from first-order recharge calcula quifer Stress (Section 4.6.1.2) assessment le in literature (See Section 4.2.3).	ations using the Map-Centric Simulation me ts. The average recharge rate equates to	thod (see Section 4.2.3), and was selected 24.34 mm/a based on the total GRU area.				
	Method	Area (km²)	Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)				
	Map Centric Simulation Method	408.82	9.95	24.34				

	GRU Name: Darling	3				
GRU	Main Towns: Darlin	ng and Mamre				
	Total Area (km ²): 4	08.81				
Groundwater Use	There are 9 register use of <u>0.77 M m³/a</u> , this GRU, which ma (see Section 4.3.3 f	ed groundwater users Agriculture (irrigation ikes up 93.0% of the or detail). Water Use Sector	in this GRU with a c) is the major groun otal groundwater u No. of Users	combined groundwater adwater use sector for se volume per annum Total Volume (M m ³ /a)	A Elandsfontein No. Su	orthern vartland
	Fractured and	Agriculture: Irrigation	5	0.71	Darling	 Industry (Uton-orban) Industry (Urban) Urban (Excluding Industrial & /Or
	Intergranular Basement	Agriculture: Watering livestock	3	0.05	Darling	
		Industry (Urban)	1	0.01		Schedule 1 W/ater Supply Service
	Total		9	0.77		Total Registered
					Yzerfontein 5 km Atlantis	Pella Pella 30 - 50
	Groundwater's cont for this GRU is <u>0.08</u>	ribution to baseflow wa <u>M m³/a</u> (see Section of	as re-calculated usir 4.4.1 for details).	ng the aquifer specific ba	seflow estimates from DWAF (2008b) based of Sum of Baseflow per	on equivalent recharge. The total discharge
Discharge		Primary / Inter	granular Aquifers		2.08E	E-03
-		Fractured and Inte	ergranular Basement		0.0	
		Т	otal		0.0	8

	GRU Name: Darling					
GRU	Main Towns: Darling and Mamre					
	Total Area (km²): 408.81					
Water Quality	The main water type in Darling is Na-Cl. The Na-Cl waters are due to and saturation of Na and Cl ions as a result of increased groundwater residence time in the relatively low transmissivity granic basement audier. Exceedances of baseline concentrations were observed for multiple parameters, with 50% of samples exceeded the RQO for EC. Exceedances are the result of contamination from agriculture, but also naturally elevated concentrations of dissolved ions. The adjusted water quality category is C, indicating that moderate levels of contamination exist.					

	GRU Name: D	arling									
GRU	Main Towns:	Darling and Man	nre								
	Total Area (kr	n²): 408.81									
	GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentratio	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
		Sulphate (mg/l)	96.10	10.70	542.20	150.67	96.1		C	_	
		Electrical conductivity (mS/m)	192.00	108.60	110-	459.57	281.6		D		
		рН	6.80	6.70	7.86	7.22	7.2		E		
		Ammonia (mg/l)	0.02	0.02	0.08	0.03	0.02		В	_	
		(mg/l)	0.83	0.02	4.16	1.19	0.83		С		
		Fluoride (mg/l)	0.15	0.10	1.50	0.66	0.56		E		
		Orthophosphate (mg/l)	0.01	0.003	0.02	0.01	0.003		В	_	
	Darling	Dissolved Aluminium (mg/l)	-	-	-	-	-	Na-Cl	-	D	C
		Dissolved Arsenic (mg/l)	-	-	-	-	-		-	5	Ŭ
		Dissolved Chromium (mg/l)	-	-	-	-	-		-		
		Dissolved Iron (mg/l)	-	-	-	-	-		-		
		Dissolved Lead (mg/l)	-	-	-	-	-		-	_	
		Dissolved Manganese (mg/l)	-	-	-	-	-		-		
		Dissolved Mercury (mg/l)	-	-	-	-	-		-		
Aquifer Stress	The GRU is considered to have a Groundwater Availability Present Status Category of 'B', indicating an unstressed or slightly stressed aquifer, and a Groundwater Quality Present Status of 'C', indicating moderate levels of localised contamination , but little or no negative impacts apparent.										
	Recha (I	arge Volume M m³/a)	Gro	oundwater Use (M m³/a)		Stress Index		Groundwater Availability Present Status Category		Groundwater Status	Quality Present Category
		9.95		0.77		0.08		В			С

5.3.11. Vredenburg GRU

	GRU Name: Vredenburg
GRU	Main Towns: Vredenburg, Paternoster and Saldanha
	Total Area (km ²): 376.68
GRU Boundary Description	The Vredenburg GRU is bound by the Cape Granite Suite outcrop and its contact with the Springfontyn Formation on its eastern edge. A combination of an interpolated extent of Cape Granite Suite outcrops and the Bok River was used as the GRUs south-eastern boarder, with the Atlantic, Saldanha Bay, and St Helena Bay coastlines forming the northern, western, and southern extent.
Resource Unit	Fractured and Intergranular Basement Aquifer
Quaternary Catchments	G10M
Description	The West Coast region is formed by basement Malmesbury Group and various plutons of the Cape Granite Suite, overlain by the Sandveld Group which is laterally continuous over large areas, and also reaches significant thicknesses.

	GRU Name: Vredenburg								
GRU	Main Towns: Vredenburg, Paternoster an	nd Saldanha							
	Total Area (km²): 376.68								
Surface Water System	Several ephemeral streams emanate from the Cape Granite Suite hills after heavy rain. All rivers follow topography, flowing from the higher lying areas in the east to the coast n the west.								
	The GRU falls within the Langebaan (A2) a IUA nor any priority biophysical nodes.	nd Berg Estuary (A1) which both have a Wa	ater Resource Class of II and Groundwater	Class II. There are no EWR sites within this					
Water Resource Classes & RQOs		Vredenburg Ce1000 A2	A1 Vredenburg Berg River (Groot) GRU Estuary Vaterbodies Priority Estuaries Quaternary catchment Quaternary Catohment Priority Biophysical Nodes Nodes Yes Groundwater Resource Class II Water Resources Class II II II II						
	An estimated recharge of 7.43 M m³/a was as the estimated recharge value for the Ad Additional recharge estimations are availab	An estimated recharge of <u>7.43 M m³/a</u> was determined from first-order recharge calculations using the Map-Centric Simulation method (see Section 4.2.3), and was selected as the estimated recharge value for the Aquifer Stress (Section 4.6.1.2) assessments. The average recharge rate equates to <u>19.75 mm/a</u> based on the total GRU area. Additional recharge estimations are available in literature (See Section 4.2.3).							
Recharge	Method	Area (km²)	Recharge Volume (M m³/a)	Average Recharge Rate (mm/a)					
	Map Centric Simulation Method	376.18	7.43	19.75					

	GRU Name: Vredenburg			
GRU	Main Towns: Vredenburg, Paternoster and	nd Saldanha		
	Total Area (km²): 376.68			
	There are 6 registered groundwater users i or domestic volume), Agriculture (irrigation) Section 4.3.3 for details).	n this GRU with a combined groundwater us and Industry (Urban) which comprise of 65.	se of 1.16 M m ³ /a. Major groundwater use .4%, 21.8% and 12.8% respectively of to	e sectors include: Urban (excluding industrial tal groundwater use volume per annum (see
	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)
	Fractured and Intergranular Basement	Industry (Urban)	1	0.15
		Agriculture: Irrigation	1	0.25
	Primary / Intergranular Aquifers	Schedule 1	1	0.0002
		Urban (Excluding industrial and/or domestic)	3	0.76
	То	tal	6	1.16
Groundwater Use		Vredenburg Paternoster Vredenburg Tierkloof Jacobsbaai Saldanha Nôreson Parker's Milnavair Noordbaai	Vredenburg Towns GRU Rivers Water Use Sector Agriculture: Aquaculture: Aquiculture: Aquiculture: Vater Use Sector Agriculture: Industry Industry (Non-Urban) Industry (Urban) Urban (Excluding Industrial &/Or Domestic) Recreation Schedule 1 Water Supply Service Total Registered Groundwater Use (M m³/a) 0 10<-20 20<-30 30<-50	

	GRU Name: Vredenburg									
GRU	Main Towns: Vredenburg, Paternoster and Saldanha									
	Total Area (km²): 376.68	Total Area (km²): 376.68								
	Groundwater's contribution to base investigated in Step 4 (i.e., EWR ar	an not being included (DWAF 2008t	b). This will however be further							
Discharge		RU		Sum of Baseflow per component (M m³/a)						
	Prima	ry / Intergranular Aquifers		0.00						
	Fractured	and Intergranular Basement		0.00						
		Total		0.00						
Water Quality	No water quality data									
Aquifor Stross	The GRU is considered to have a Groundwater Availability Present Status Category of 'B', indicating an unstressed or slightly stressed aquifer, and the Groundwater Quality Present Status is unknown due to limited data availability.									
	Recharge Volume (M m³/a)	Groundwater Use (M m³/a)	Stress Index	Groundwater Present Status Category (after WRC, 2007)	Final Groundwater Quality Present Status Category					
	7.43	1.16	0.16	В	N/A					

6. REFERENCES

- Allison, G. B., Gee, G. W., & Tyler, S. (1994). Vadose-zone techniques for estimating groundwater recharge in arid and semi-regions. Soil Science Society of America Journal, 58(1), 6-14.
- Allison, G. B., Barnes, C. J., Hughes, M. W., & Leaney, F. W. J. (1983). Effect of climate and vegetation on oxygen-18 and deuterium profiles in soils. Isotope Hydrology, 105-123.
- Andries, C. W. (2019). Application of environmental tracer methods to conceptualize groundwater recharge, West Coast, South Africa. Unpublished M.Sc. thesis, University of the Western Cape, Bellville.
- Barnett, W., Armstrong, R. A., & de Wit, M. J. (1997). Stratigraphy of the upper Neoproterozoic Kango and lower Paleozoic Table Mountain Groups of the Cape Fold Belt revisited. South African Journal of Geology, 100(3), 237-250.
- Basson, M. S., Van Niekerk, P. H., & Van Rooyen, J. A. (1997). Overview of Water Resources Availability and Utilization in South Africa. Department of Water Affairs and Forestry, Pretoria.
- Bredenkamp, D. B., Botha, L. J., van Tonder, G. J., & van Rensburg, H. J. (1995). Manual on quantitative estimation of groundwater recharge and aquifer storativity. Water Research Commission (WRC) Report No TT 73/95.
- Bresler, E. (1973). Anion exclusion and coupling effects in nonsteady transport through unsaturated soils: 1. Theory. Soil Science Society of America Journal, 37(5), 663-669.
- Broquet, C. A. M. (1992). The sedimentary record of the Cape Supergroup: A review. In d. W. Ransome (Ed.), Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa (pp. 159-183). Rotterdam: Balkema.
- City of Cape Town (CoCT). (2018). Numerical Groundwater Model of the Cape Flats Aquifer -Progress Report, Water Resilience Plan: Cape Flats Aquifer. (Report No. 896/7.1/01/2018, 59 pp). Prepared by R. Hugman, J. F. Atkins, J. Weitz, E. Wise, T. Flugel, C. J.H. Hartnady of Umvoto Africa Pty (Ltd.) on behalf of the City of Cape Town.
- City of Cape Town (CoCT). (2020a). New Water Programme Cape Flats Aquifer Management Scheme: 2018-2020 Hydrochemistry Report. Prepared by Andrew Gemmell, Sabine Henry, David McGibbon, Magen Munnik and Alex Kuhudzai of Umvoto Africa (Pty) Ltd on behalf of the CoCT Municipality. Final Draft, Report No.: 896/07/08/2020, October 2020, pg. 97 (excluding Appendices).
- City of Cape Town (CoCT). (2020b) New Water Programme Atlantis Water Resource Management Scheme: AWRMS Water Quality Report 2020 – 2021. Prepared by Maposholi Mokhethi, Andrew Gemmell, Luke Towers, Masonwabe Kwata of Umvoto Africa (Pty) Ltd on behalf of the CoCT Municipality. Final Draft, Report No.: 897/7.2/03/2020, September 2021, pg 62 (excluding Appendices).
- City of Cape Town (CoCT). (2020c). Numerical Groundwater Model of the Atlantis Aquifer, New Water Programme: Atlantis Water Resource Management Scheme. (Report No. 897/7.2b/12/2020, 103 pp). Prepared by J. Weitz, R. Hugman, E. Wise, T. Flügel, E. Van Den Berg and L. Towers of Umvoto Africa Pty (Ltd.) on behalf of the City of Cape Town Bulk Water Department.
- City of Cape Town (CoCT). (2021a). City of Cape Town New Water Programme: Table Mountain Group Aquifer. Steenbras-Nuweberg Nardouw Aquifer Steady-State Numerical Model Report. (Final Draft, Umvoto Report No. 899/07/02/2021, 54pp). Prepared by J. Weitz of Umvoto Africa Pty (Ltd) on behalf of Zutari (Pty) Ltd for the City of Cape Town: Water and Sanitation Department: Bulk Water Branch: Bulk Water Resource and Infrastructure Planning.

- City of Cape Town (CoCT). (2021b). Steenbras Wellfield Baseline Monitoring Report, City of Cape Town New Water Programme – Table Mountain Group Aquifer. Prepared by Lechelle Goslin, Paul Lee, Gemma Bluff, Maposholi Mokhethi, Magen Munnik, Cole Grainger, Sabine Henry and Kornelius Riemann of Umvoto Africa Pty (Ltd.), Justine Ewart-Smith of Freshwater Consulting Group (Pty) Ltd. and Karl Reinecke of Southernwaters (Pty) Ltd. on behalf of Zutari Engineers for the City of Cape Town, Water & Sanitation Directorate, Bulkwater Branch. Draft; Report No. 899/08/02/2021.
- City of Cape Town. (2022). City of Cape Town New Water Programme: Table Mountain Group Aquifer. Steenbras Wellfield Integrated Water Use Licence Application: Section 21(a) Hydrogeological Report. Prepared by K. Riemann, D. Blake, Z. Rademan, K. Prinsloo, J. Weitz, M. Mokhethi, K. De Bruin, K. Gibson and G. Bluff of Umvoto South Africa (Pty) Ltd on behalf of the City of Cape Town. Version 1 / Draft, Report No.: 995/WP032/5/1/2022
- Department of Water Affairs (DWA), South Africa. (2014). Development of Reconciliation Strategies for all Towns in the Southern Planning Region: Summary Report . Directorate : National Water Resource Planning.
- Department of Water Affairs and Forestry (DWAF). (2000). 1:500 000 3317 Cape Town Hydrogeological Map Series of the Republic of South Africa. DWAF, Pretoria, RSA. Meyer, P. S. (2001). An Explanation of the 1:500 000 General Hydrogeological Map Cape Town 3317. DWAF, Pretoria, RSA.
- Department of Water Affairs and Forestry (DWAF). (2000b). Reconnaissance investigation into the development and utilisation of the Table Mountain Group artesian groundwater, using the E10 Catchment as a pilot study area: Final Report. Cape Town: Venture, Umvoto Africa cc and SRK Joint.
- Department of Water Affairs and Forestry (DWAF). (2002). Groundwater Assessment. Prepared by G Papini of Groundwater Consulting Services as part of the Breede River Basin Study.
- Department of Water Affairs and Forestry (DWAF). (2005a). The Assessment of Water Availability in the Berg Catchment (WMA 19) by means of Water Resource Related Models: Inception Report. (Final draft, September 2005). Submitted by Ninham Shand in association with Umvoto Africa, Project No. W8147/04.
- Department of Water Affairs and Forestry (DWAF). (2005b). Groundwater Resource Assessment, Phase II Task 3b - Groundwater - Surface water Interaction. (Version 1 Final).
- Department of Water Affairs and Forestry (DWAF). (2005c). Groundwater Resource Assessment, Phase II Task 4 - Methodology for Classification. (Version 1 Final).
- Department of Water Affairs and Forestry (DWAF). (2005d). Olifants/Doorn Water Management Area - Internal Strategic Perspective. (Version 1, February 2005). Prepared by Ninham Shand in association with Umvoto Africa, Jakoet & Associates, and Tlou & Matji.
- Department of Water Affairs and Forestry (DWAF). (2006). Groundwater Resource Assessment II: Task 3aE. (Recharge Version 2.0 Final Report 2006-06-20).
- Department of Water Affairs and Forestry (DWAF). (2007). The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models. Groundwater Model Report Volume 3 Regional Conceptual Model. Prepared by Umvoto Africa (Pty) Ltd in association with Ninham Shand (Pty) Ltd on behalf of the Directorate : National Water Resource Planning. DWAF Report No. P WMA 19/000/00/0407
- Department of Water Affairs and Forestry (DWAF). (2007c). The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models : Rainfall Data Processing and MAP Surface. (DWAF Report No. P WMA 19/000/00/0407). Planning., Prepared by Ninham Shand (Pty) Ltd in association with Umvoto Africa (Pty) Ltd on behalf of Directorate: National Water Resource.

- Department of Water Affairs and Forestry (DWAF). (2008a). The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Groundwater Model Report Volume 4 – Regional Water Balance Model. Prepared by Umvoto Africa (Pty) Ltd in association with Ninham Shand (Pty) Ltd on behalf of the Directorate : National Water Resource Planning. DWAF Report No. P WMA 19/000/00/0408
- Department of Water Affairs and Forestry (DWAF). (2008b). The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Groundwater Model Report Volume 7 – TMG Aquifer, Piketberg Model. Prepared by Umvoto Africa (Pty) Ltd in association with Ninham Shand (Pty) Ltd on behalf of the Directorate : National Water Resource Planning. DWAF Report No. P WMA 19/000/00/0408
- Department of Water Affairs and Forestry (DWAF). (2008c). The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Groundwater Model Report Volume 8 – TMG Aquifer, Witzenberg-Nuy Model. Prepared by Umvoto Africa (Pty) Ltd in association with Ninham Shand (Pty) Ltd on behalf of the Directorate : National Water Resource Planning. DWAF Report No. P WMA 19/000/00/0408
- Department of Water Affairs and Forestry (DWAF). (2008d). The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Groundwater Report Volume 5 - Cape Flats Aquifer. Prepared by Umvoto Africa (Pty) Ltd in association with Ninham Shand (Pty) Ltd on behalf of the Directorate : National Water Resource Planning. DWAF Report No. P WMA 19/000/00/0408
- Department of Water Affairs and Forestry (DWAF). (2008e). The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Groundwater Model Report Volume 6 - Langebaan Road and Elandsfontein Aquifer System Model. (DWAF Report No. P WMA 19/000/00/0408.). Prepared by Umvoto Africa (Pty) Ltd in association with Ninham Shand (Pty) Ltd on behalf of the Directorate : National Water Resource Planning.
- Department of Water Affairs and Forestry (DWAF). (2008f). The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models: Groundwater Model Report Volume 9 - Breede River Alluvium Aquifer Model. Prepared by Umvoto Africa (Pty) Ltd in association with Ninham Shand (Pty) Ltd on behalf of the Directorate : National Water Resource Planning. DWAF Report No. P WMA 19/000/00/0408
- Department of Water and Sanitation (DWS). (2015). Support to the Continuation of the Water Reconciliation Strategy for the Western Cape Water Supply System: Water Allocation Report. s.l.:Prepared by Umvoto Africa (Pty) Ltd in association with Worley Parsons on behalf of the Directorate: National Water Resource Planning.
- Department of Water and Sanitation (DWS). (2016a). Determination of Water Resource Classifications and Resource Quality Objectives in the Berg Catchment: Inception Report. Project Number WP10987. DWS Report No: RDM/WMA9/00/CON/CLA/0116.
- Department of Water and Sanitation (DWS). (2016b). Determination of Water Resource Classifications and Resource Quality Objectives in the Berg Catchment: Stakeholder Identification and Mapping Report. (Report No: RDM/WMA9/00/CON/CLA/0216).
- Department of Water and Sanitation (DWS). (2016c). Determination of Water Resource Classes and Resource Quality Objectives in the Berg Catchment: Water Resources Information Gap Analysis and Models. (Report No: RDM/WMA9/00/CON/WRC/0316).
- Department of Water and Sanitation (DWS). (2016d). Determination of Water Resources Classes and Associated Resource Quality Objectives in the Berg Catchment: Resource Units and Integrated Units of Analysis Delineation. Project Number WP10987. DWS Report No: RDM/WMA9/00/CON/CLA/0416.
- Department of Water and Sanitation (DWS). (2016e). Determination of Water Resource Classes and Associated Resource Quality Objectives in the Berg Catchment: Linking the Value and

Condition of the Water Resource. Project Number WP10987. (DWS Report No: RDM/WMA9/00/CON/CLA/0117).

- Department of Water and Sanitation (DWS). (2017a). Determination of Water Resources Classes and Associated Resource Quality Objectives in the Berg Catchment: Status Quo Report. Project Number WP10987. (DWS Report No: RDM/WMA9/00/CON/CLA/0516).
- Department of Water and Sanitation (DWS). (2017b). Determination of Water Resource Classes and Associated Resource Quality Objectives in the Berg Catchment: Quantification of the Ecological Water Requirements and Changes in Ecosystem Goods, Services and Attributes. Project Number WP 10987. (DWS Report No: RDM/WMA9/00/CON/CLA/0217).
- Department of Water and Sanitation (DWS). (2017c). Determination of Water Resource Classes and Associated Resource Quality Objectives in the Berg Catchment: Ecological base configuration scenarios Report. Project Number WP10987. (DWS Report No: RDM/WMA9/00/CON/CLA/0317).
- Department of Water and Sanitation (DWS). (2017d). Determination of Water Resources Classes and Resource Quality Objectives in the Berg Catchment: Evaluation of Scenarios Report. (Report No: RDM/WMA9/00/CON/CLA/0417).
- Department of Water and Sanitation (DWS). (2018a). Determination of Water Resource Classes and Associated Resource Quality Objectives in the Berg Catchment: Resource Units Prioritisation Report. Project Number WP10987. (DWS Report No: RDM/WMA9/00/CON/CLA/0517).
- Department of Water and Sanitation (DWS). (2018b). Determination of Water Resource Classes and Associated Resource Quality Objectives in the Berg Catchment: Evaluation of Resource Units Report. Project Number WP10987. (DWS Report No: RDM/WMA9/00/CON/CLA/0118).
- Department of Water and Sanitation (DWS). (2018c). Determination of Water Resources Classes and associated Resource Quality Objectives in Berg Catchment: Outline of Resource Quality Objectives Report. Project Number WP10987. (DWS Report No: RDM/WMA9/00/CON/CLA/0218).
- Department of Water and Sanitation (DWS). (2018d). Determination of Water Resources Classes and associated Resource Quality Objectives in Berg Catchment: Monitoring programme to support Resource Quality Objectives Implementation Report Project Number WP10987. (DWS Report No: RDM/WMA9/00/CON/CLA/0318).
- Department of Water and Sanitation (DWS). (2018e). Determination of Water Resources Classes and associated Resource Quality Objectives in Berg Catchment: Confidence of Resource Quality Objectives Report. Project Number WP10987. (DWS Report No: RDM/WMA9/00/CON/CLA/0318).
- Department of Water and Sanitation (DWS). (2019a). Determination of Water Resources Classes and associated Resource Quality Objectives in Berg Catchment: Final Project Close Out Report. (Report No: RDM/WMA9/00/CON/CLA/0718).
- Department of Water and Sanitation (DWS). (2019b: 121). National Water Act, 1998 (Act no. 36 of 1998): Proposed classes of water resource and resource quality objectives for the Berg catchment. (Notice 655) Government Gazette, 42451.
- Department of Water and Sanitation (DWS). (2022a). High Confidence Groundwater Reserve Determination Study in the Berg Catchment – Inception Report. Version 1 / Final Report No. RDM/WMA19/02/CON/COMP/0122, 28. Prepared by L. Goslin, M. Misrole and D. McGibbon of Umvoto South Africa Pty (Ltd.) on behalf of DWS.
- Department of Water and Sanitation (DWS). (2022b). High Confidence Groundwater Reserve Determination Study in the Berg Catchment – Gap Analysis Report. (Version 1 / Draft Report No. RDM/WMA19/02/CON/COMP/0222), 25. Prepared by M. Misrole, L. Goslin and D. McGibbon of Umvoto South Africa Pty (Ltd.) on behalf of DWS.

- Department of Water and Sanitation (DWS). (2022c). High Confidence Groundwater Reserve Determination Study in the Berg Catchment – Inventory of Water Resource Models Report. (Version 1). Prepared by J. Weitz of Umvoto South Africa Pty (Ltd.) on behalf of DWS.
- Department of Water and Sanitation (DWS). (2022d). High Confidence Groundwater Reserve Determination Study in the Berg Catchment – Delineation of Groundwater Resource Units Report. Version 1 / Final; Report No. 1001/1/4/2022, 37. Prepared by M. Misrole, T. Flugel and D. McGibbon of Umvoto South Africa Pty (Ltd.) on behalf of DWS.
- Du Toit, I. M., & Weaver, J. M. (1995). Saldanha Steel Project: Groundwater Investigations. Consulting Report to Saldanha Steel and Bechtel-LTA. CSIR Report No 27/95 WF034, CSIR, Stellenbosch.
- Du Toit, I., Conrad, J., & Tredoux, G. (1995). Simulation of the Impact of Abstraction from Production Boreholes to the South of the Witzand Well-Field, Atlantis. (CSIR Report No. 19/95, Project No. WF 699 6800 6860, July 1995, Stellenbosch).
- Department of Water Affairs, South Africa (DWA, SA). (2014). Development of Reconciliation Strategies for all Towns in the Southern Planning Region: Summary Report . Directorate : National Water Resource Planning. s.l.:s.n.
- Ebrahim, Y. (2015). Estimating Groundwater Recharge in confined aquifers of Langebaan and Elandsfontein, West Coast, Western Cape, South Africa, unpublished B.Sc. Honours thesis, University of the Western Cape, Bellville.
- Edmunds, W., Darling, W., & Kinniburgh, D. (1988). Solute profile techniques for recharge in semiarid and arid terrain. In "I. Simmers (editor), Estimation of Natural Groundwater Recharge. (pp. 139-158). Reidel, Dordrecht: NATO ASI Series C222,.
- Edmunds, W. M., & Shand, P. (2008). Groundwater baseline quality. Natural groundwater quality. Blackwell Publishing. 1-21.
- Eriksson, E., & Khunakasem, V. (1969). Chloride concentrations in groundwater, recharge rate and rate of deposition of chloride in the Israel coastal plane. Journal of Hydrology(7), 178-179.
- Food and Agricultural Organization (FAO). (2001). FAO Methodologies on Crop Water Use and Crop Water Productivity. Prepared by A. Kassam and M. Smith. Expert Meeting on Crop Water productivity. Rome, 3 to 5 December: Paper No CWP-M07.
- Forestry, D. o. (2000). Reconnaissance investigation into the development and utilisation of the Table Mountain Group artesian groundwater, using the E10 Catchment as a pilot study area: Final Report. Umvoto Africa cc and SRK Joint Venture. Cape Town.
- Gardner, W. (1967). Water uptake and salt distribution patterns in saline soils. (pp. 335-340). In Isotope and Radiation Techniques in Soil Physics and Irrigation Studies. Proceedings of a Symposium on the Use of Isotope and Radiation Techniques in Soil Physics and Irrigation Studies.
- Gerber, A. (1980). Final Report on the geohydrology of the sand deposits in the Cape Flats. (Report 620/9839/7). Pretoria: Water Research Commission.
- Gresse, P. G., Theron, J. N., Fitch, F. J., & Miller, J. A. (1992). Tectonic inversion and radiometric resetting of the basement in the Cape Fold Belt. In d. W. Ransome (Ed.), Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa. Rotterdam: Balkema.
- Gvirtzman, H., & Magaritz, M. (1986). Investigation of water movement in the unsaturated zone under an irrigated area using environmental tritium. Water Resour. Res., 22(5), 635-642.
- Halbich, I. W. (1992). The Cape Fold Belt orogeny: State of the art 1970's-1980's. (pp. 141-158). In Conference on inversion tectonics of the Cape Fold Belt .

- Hartnady, C., Newton, A., & Theron, J. N. (1974). The stratigraphy and structure of the Malmesbury Group in the southwestern Cape. Bulletin Precambrian Research Unit, University of Cape Town.
- James, R., & Rubin, J. (1986). Transport of chloride ion in a water-unsaturated soil exhibiting anion exclusion. Soil Sci. Soc. Am. J.(50), 1142-1149.
- Kotze, J. (2002). Towards a management tool for groundwater exploitation in the Table Mountain sandstone fractured aquifer. Final Report. SRK April 2002. (WRC report no. 729/1/02).
- Lerner, D., Issar, A., & Simmers, I. (1990). Groundwater recharge- a guide to understanding and estimating natural recharge. Int. Contributions to Hydrogeology (IAH), Verlag Heinz Heise, Germany. 8, 345.
- Midgley, D., Pitman, W., & Middleton, B. (1994a). Surface Water Resources of South Africa 1990: Book of Maps. (First ed., Vol. IV). Water Research Commission. WRC Report no. 729/1/02.
- Naicker, S., & Demlie, M. (2014). Environmental isotopic and hydrochemical characteristics. Water Science and Technology, 69(3), 601-611.
- Ransome, I. G., & de Wit, M. J. (1992). Preliminary investigations into a microplate model for the South Western Cape. In d. W. Ransome (Ed.), Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa (pp. 257-266). Rotterdam: Balkema.
- Reid, D. L., Erlank, A. J., & Rex, D. C. (1991). Age and correlation of the False Bay dolerite dyke swarm, south-western Cape, Cape Province. South African Journal of Geology(94), 155-158.
- Riemann, K., Mlisa, A., & Hay, E. (2004, September). GIS based model for aquifer specific recharge estimation as basic for a groundwater management and decision tool on a quaternary catchment scale. Carlsbad: in: Proceedings Finite element, Modflow and more 2004.
- Schulze, R. E., Maharaj, M., Lynch, S. D., Howe, B. J., & Melvil-Thomson, B. (1997). South African Atlas of Agrohydrololgy and Climatology. Pretoria: WRC Report No. TT82/96. ACRU Report No. 46.
- Selaolo, E. (1998). Tracer studies and groundwater recharge assessment in the Eastern fringe of the Botswana Kalahari. Published Ph.D. thesis, Free University of Amsterdam. GRES project publication.
- Selaolo, E. (1998). Tracer studies and groundwater recharge assessment in the eastern fringe of the Botswana Kalahari The LetIhakeng-BotIhapatlou area. Ph.D. Thesis, Free University Amsterdam. 229.
- Seyler, H., Bollaert, M., & Witthüser, K. (2016). Regional Water Sensitive Urban Design Scenario Planning for Cape Town using an Urban (geo)hydrology Model. Cape Town.
- Spannenberg, J. M. (2015). Estimation of Groundwater Recharge with the Chloride Mass Balance (CMB) and Rainfall Infiltration Breakthrough (RIB) Methods: using the West Coast as a case study, unpublished B.Sc. Honours thesis, University of the Western Cape, Bellville.
- SRK. (2004). Assessment of Development Potential of Groundwater Resources for the West Coast District Municipality, Report for the DWAF and the West Coast Municipality.
- Theron, J. N., Gresse, P. G., Siegfried, H. P., & Rogers, J. (1992). The Geology of the Cape Town Area: Explanation of Sheet 3318, scale 1:250 000, by the Geological Survey for the Department of Mineral and Energy Affairs.
- Tiimerman, K. M. (1985). Preliminary report on the geohydrology of the Langebaan Road and Elandsfontein aquifer units in the lower Berg River region. Report GH3373. Department of Water Affairs and Forestry. Cape Town. Report GH3373. Department of Water Affairs and Forestry. Cape Town.
- Turc, L. (1954). e bilan d'eau sols. Relation entre les precipitation, l'évaporation et l'écoulement. Ann Agron, 5: 491-596; 6: 5-131.

- Vandoolaeghe, M. (1989). The Cape Flats groundwater development pilot abstraction scheme; Technical report GH3655. Directorate of Geohydrology, Department of Water Affairs and Forestry.
- Vandoolaeghe, M. A. (1989). The Cape Flats groundwater development pilot abstraction scheme; Technical report GH3655. Directorate of Geohydrology, Department of Water Affairs and Forestry.
- Weaver, J., & Talma, A. (2005). Cumulative rainfall collectors--A tool for assessing groundwater recharge. Water SA, 31(3), 283-290.
- Welty, J., Wicks, C., & Wilson, R. (1976). Fundamentals of momentum heat and mass transfer. John Wiley & Sons Inc.
- Water Research Commission (WRC). (2007). Groundwater Resource Directed Measures Manual, Setting Resource Directed Measures (RDM) for Groundwater: A pilot study. (Report No. TT 299/07). Prepared by Parsons, R. and Wentzel, J. for the Department of Water Affairs and Forestry.
- Water Research Commission (WRC). (2012). Water Resources of South Africa, 2012 (WR2012). (WRC Project No. K5/2143/1). Bailey, A. and Pitman, W.
- Water Research Commission (WRC). (2013). Groundwater Reseourcs Directed Measures. (WRC Report No TT 506/12). Dennis, I.; Witthüsser, K.; Vivier, K.; Dennis, R.; Mavurayi, A.
- Water Research Commission (WRC). (2020). Towards sustainable exploitation of groundwater resources along the West Coast of South Africa. (Deliverable 10 of WRC Project No K5/2744).
- Zhang, J., van der Voort, I., Weaver, J., & Tredoux, G. (in prep). Numerical models for Atlantis aquifer. CSIR Report ENV-S-I 2001-10.

APPENDIX A: Recharge

Appendix A-1: First-Order Recharge Estimations

Table A-1-1First-order aquifer-specific recharge estimation per RU for Primary / Intergranular
Aquifers outlined in Section 4.2.1: Fixed Percentage of MAP method; 2) GRAII Spatial
Distribution modified method; 3) Empirical Rainfall-Recharge Relationship method; and
4) Map-Centric Simulation method.

		Recharge Volume (M m³/a)			
GRU	RU	Fixed % MAP	GRAII (modified)	Empirical Rainfall- Recharge	Map Centric
	Primary / Inte	ergranular Aqui	fers		
	Primary/Intergranular Aquifer	10.01	26.97	26.98	20.48
Cape Flats	Fractured and Intergranular Aquifer	0.02	0.07	0.03	0.04
	Primary/Intergranular Aquifer	4.26	11.95	9.58	6.16
Atlantis	Fractured and Intergranular Basement Aquifer	0.01	0.01	0.01	0.01
	Primary/Intergranular Aquifer	4.73	10.75	10.53	8.83
Yzerfontein	Fractured and Intergranular Basement Aquifer	0.16	0.46	0.22	0.37
	Primary/Intergranular Aquifer	7.51	15.06	16.81	15.12
Elandsfontein	Fractured and Intergranular Basement Aquifer	0.20	0.51	0.28	0.35
	Primary/Intergranular Aquifer	10.04	19.65	17.32	22.44
Langebaan Road	Fractured and Intergranular Basement Aquifer	0.33	0.95	0.43	0.84
	Primary/Intergranular Aquifer	7.36	12.88	13.03	21.60
Adamboerskraal	Fractured and Intergranular Basement Aquifer	0.01	0.01	0.01	0.01
Total		44.63	99.27	95.23	96.26

Table A-1-2First-order aquifer-specific recharge estimation per RU for Fractured Table Mountain
Group Aquifers outlined in Section 4.2.1: Fixed Percentage of MAP method; 2) GRAII
Spatial Distribution modified method; 3) Empirical Rainfall-Recharge Relationship
method; and 4) Map-Centric Simulation method.

		Recharge Volume (M m³/a)				
GRU	RU	Fixed % MAP	GRAII (modified)	Empirical Rainfall- Recharge	Map Centric	
	Fracture	d Table Mountair	n Group Aquifers	3		
	Primary/Intergranular Aquifer	1.98	8.70	6.56	1.85	
	Peninsula Aquifer	22.47	24.22	16.08	8.32	
	Fractured and Intergranular Other	0.00	1.46	0.00	0.32	
Cape Peninsula	Fractured and Intergranular Basement Aquifer	0.40	1.95	0.92	0.50	
	Primary/Intergranular Aquifer	0.12	0.46	0.64	0.19	
	Nardouw Aquifer	7.44	22.81	15.37	7.91	
	Peninsula Aquifer	13.24	22.81	19.22	6.05	
	Fractured and Intergranular Other	0.00	11.63	0.00	3.40	
Steenbras- Nuweberg	Fractured and Intergranular Basement Aquifer	0.16	1.04	0.44	0.42	
	Primary/Intergranular Aquifer	0.02	0.06	0.15	0.03	
	Nardouw Aquifer	0.99	2.27	1.95	1.48	
	Peninsula Aquifer	46.06	72.89	81.38	23.26	
	Fractured and Intergranular Other	0.00	6.34	0.00	2.28	
Drakensteinberge	Fractured and Intergranular Basement Aquifer	0.00	0.00	0.00	0.00	
	Primary/Intergranular Aquifer	0.79	3.76	3.64	2.17	
	Nardouw Aquifer	1.49	4.28	2.67	2.06	
	Peninsula Aquifer	36.43	54.58	44.29	19.03	
	Fractured and Intergranular Other	0.00	7.34	0.00	3.29	
Wemmershoek	Fractured and Intergranular Basement Aquifer	0.29	1.92	1.00	0.29	
	Primary/Intergranular Aquifer	0.15	0.99	0.79	0.30	
	Nardouw Aquifer	1.85	2.79	2.98	1.67	
	Peninsula Aquifer	21.21	19.29	19.60	9.82	
Voëlvlei- Slanghoek	Fractured and Intergranular Other	0.00	4.97	0.00	2.31	

Page B

		Recharge Volume (M m³/a)			
GRU	RU	Fixed % MAP	GRAII (modified)	Empirical Rainfall- Recharge	Map Centric
	Fractured and Intergranular Basement Aquifer	0.00	0.00	0.00	0.00
	Primary/Intergranular Aquifer	0.00	0.00	0.00	0.00
	Peninsula Aquifer	5.11	2.68	4.12	2.55
	Fractured and Intergranular Other	0.00	0.29	0.00	0.23
Witsenberg	Fractured and Intergranular Basement Aquifer	0.00	0.00	0.00	0.00
	Primary/Intergranular Aquifer	0.00	0.00	0.00	0.00
	Nardouw Aquifer	7.24	11.53	8.56	7.64
	Peninsula Aquifer	26.58	21.65	21.94	11.57
	Fractured and Intergranular Other	0.00	7.15	0.00	3.28
Groot Winterhoek	Fractured and Intergranular Basement Aquifer	0.00	0.00	0.00	0.00
	Primary/Intergranular Aquifer	0.13	0.26	0.29	0.30
	Nardouw Aquifer	1.52	0.97	1.35	2.22
	Peninsula Aquifer	17.99	7.20	8.52	13.39
	Fractured and Intergranular Other	0.00	2.20	0.00	4.42
Piketberg	Fractured and Intergranular Basement Aquifer	0.00	0.00	0.00	0.00
Total		213.66	330.50	262.45	142.56

Table A-1-3First-order aquifer-specific recharge estimation per RU for Fractured and Intergranular
Basement Aquifers outlined in Section 4.2.1: Fixed Percentage of MAP method; 2)
GRAII Spatial Distribution modified method; 3) Empirical Rainfall-Recharge
Relationship method; and 4) Map-Centric Simulation method.

		Recharge Volume (M m³/a)				
GRU	RU	Fixed % MAP	GRAII (modified)	Empirical Rainfall- Recharge	Map Centric	
	Fractured and Interg	granular Bas	ement Aquifer B	asement	-1	
	Primary/Intergranular Aquifer	7.14	20.02	23.43	12.51	
	Peninsula Aquifer	0.01	0.01	0.01	0.01	
	Fractured and Intergranular Other	0.00	0.02	0.00	0.02	
Cape Town Rim	Fractured and Intergranular Basement Aquifer	2.66	9.16	5.62	6.05	
	Primary/Intergranular Aquifer	9.98	32.32	39.45	22.08	
	Peninsula Aquifer	7.51	8.84	10.00	4.50	
	Fractured and Intergranular Other	0.00	0.13	0.00	0.06	
Stellenbosch- Helderberg	Fractured and Intergranular Basement Aquifer	5.00	21.04	12.69	14.89	
	Primary/Intergranular Aquifer	8.55	39.55	37.56	19.01	
	Nardouw Aquifer	0.00	0.00	0.00	0.00	
	Peninsula Aquifer	2.04	2.38	1.92	1.11	
	Fractured and Intergranular Other	0.00	0.05	0.00	0.03	
Paarl-Franschhoek	Fractured and Intergranular Basement Aquifer	3.50	18.77	9.38	6.46	
	Primary/Intergranular Aquifer	13.15	24.97	30.62	20.31	
	Peninsula Aquifer	0.39	0.12	0.25	0.14	
	Fractured and Intergranular Other	0.00	0.02	0.00	0.02	
Malmesbury	Fractured and Intergranular Basement Aquifer	14.08	32.04	21.16	32.18	
	Primary/Intergranular Aquifer	7.10	14.68	20.45	14.14	
	Peninsula Aquifer	0.64	0.42	0.49	0.25	
	Fractured and Intergranular Other	0.00	0.12	0.00	0.11	
Wellington	Fractured and Intergranular Basement Aquifer	12.58	32.19	21.45	24.99	
Tulbagh	Primary/Intergranular	3.21	7.28	10.25	5.32	

Page D

		Recharge Volume (M m³/a)			
GRU	RU	Fixed % MAP	GRAII (modified)	Empirical Rainfall- Recharge	Map Centric
	Peninsula Aquifer	0.00	0.00	0.00	0.00
	Fractured and Intergranular Basement Aquifer	2.73	7.46	4.86	5.55
	Primary/Intergranular Aquifer	3.69	5.51	9.69	4.17
	Peninsula Aquifer	0.04	0.01	0.02	0.02
	Fractured and Intergranular Other	0.00	0.03	0.00	0.08
Eendekuil Basin	Fractured and Intergranular Basement Aquifer	8.84	10.92	12.41	17.62
	Primary/Intergranular Aquifer	8.54	11.40	17.50	18.46
	Peninsula Aquifer	0.15	0.04	0.09	0.06
	Fractured and Intergranular Other	0.00	0.01	0.00	0.02
Middle-Lower Berg	Fractured and Intergranular Basement Aquifer	9.69	10.65	12.96	23.95
	Primary/Intergranular Aquifer	9.77	15.65	21.66	15.60
Northern Swartland	Fractured and Intergranular Basement Aquifer	7.39	10.71	10.26	16.25
	Primary/Intergranular Aquifer	1.47	3.16	3.31	1.81
Darling	Fractured and Intergranular Basement Aquifer	4.37	12.00	6.11	8.15
	Primary/Intergranular Aquifer	1.64	2.74	2.22	3.14
Vredenburg	Fractured and Intergranular Basement Aquifer	1.43	2.64	1.22	4.29
Total		157.27	357.06	347.03	303.35

APPENDIX B: Water Use

Appendix B-1: Water Use for the Berg Catchment

Table B-1-1Total groundwater use per RU per water use sector, as registered in WARMS, for
Primary / Intergranular Aquifers.

GRU	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)
Primary / Intergranula	ar Aquifers	1		
		Agriculture: Irrigation	50	4.08
		Agriculture: Watering livestock	2	0.05
		Industry (Non-urban)	2	1.05
	Drimon / Intergropular	Industry (Urban)	31	0.97
Cape Flats	Aquifers	Mining	1	0.39
		Schedule 1	1	0
		Urban (Excluding industrial and/or domestic)	3	0.02
		Water Supply Service	5	20.09
		Agriculture: Irrigation	9	0.16
	Primary / Intergranular Aquifers	Agriculture: Watering livestock	6	0.33
Atlantis		Industry (Non-urban)	1	0.04
		Industry (Urban)	7	5.87
		Mining	1	0.37
Yzerfontein	Primary / Intergranular Aquifers	Water Supply Service	1	0.26
		Agriculture: Irrigation	1	0.16
	Primary / Intergranular Aquifers (Upper)	Industry (Urban)	1	0.01
Elandsfontein	Aquilers (Opper)	Mining	1	0.70
	Primary / Intergranular Aquifers (Lower)	Agriculture: Irrigation	1	0.22
		Agriculture: Irrigation	9	0.71
	Primary / Intergranular	Agriculture: Watering livestock	2	0.02
	Aquifers (Upper)	Industry (Non-urban)	4	0.01
Langebaan Road		Industry (Urban)	1	0.04
		Agriculture: Irrigation	6	0.87
	Primary / Intergranular	Agriculture: Watering livestock	8	0.08
		Water Supply service	3	6.87
	Primary / Intergranular	Agriculture: Irrigation	11	1.34
Adamboerskraal	Aquifers	Industry (Urban)	1	0.79

Table B-1-2 Total groundwater use per RU per water use sector as registered in WARMS for Fractured Table Mountain Group Aquifers.

GRU	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)
Fractured Table Mo	ountain Group Aquifers	-	-	
	Fractured Table Mountain Group	Agriculture: Aquaculture	1	0.01
		Agriculture: Irrigation	1	0.02
Cape Peninsula	Peninsula Aquifer	Agriculture: Watering livestock	1	0.01
		Industry (Urban)	1	0.01
	Primany / Intergrapular Aquifera	Agriculture: Irrigation	2	0.02
	Fillinary / Intergranular Aquilers	Industry (Urban)	2	0.003
Steenbras- Nuweberg	Fractured Table Mountain Group (Nardouw)	Water Supply service	1	9.13
	Fractured Table Mountain Group (Nardouw)	None		
Drakensteinberge	Fractured Table Mountain Group (Peninsula)	Agriculture: Irrigation	2	0.05
	Fractured Table Mountain Group (Nardouw)	Agriculture: Irrigation	2	0.01
		Industry (Urban)	2	0.08
Wemmershoek	Fractured Table Mountain Group (Peninsula)	Agriculture: Irrigation	10	0.43
	Primary / Intergranular Aquifers	Agriculture: Aquaculture	1	0.30
		Agriculture: Irrigation	2	0.04
Slanghoek	Fractured Table Mountain Group	Agriculture: Watering livestock	1	0.10
Witsenberg	Fractured Table Mountain Group	Agriculture: Irrigation	3	0.08
	Fractured Table Mountain Group (Nardouw)	Agriculture: Irrigation	7	1.21
Groot Winterhoek	Fractured Table Mountain Group	Agriculture: Irrigation	3	0.18
	(Peninsula)	Industry (Non-urban)	1	0.01
	Fractured Table Mountain Group (Nardouw)	Agriculture: Irrigation	5	0.44
		Agriculture: Irrigation	41	5.02
Piketberg	Fractured Table Mountain Group (Peninsula)	Industry (Non-urban)	2	0.056
		Water Supply Service	3	0.07
	Primary / Intergranular Aquifers	Agriculture: Irrigation	1	0.002

Table B-1-3Total groundwater use per RU per water use sector as registered in WARMS for
Fractured and Intergranular Basement Aquifers.

GRU	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)
Fractured and Intergranu	lar Basement		1	
		Agriculture: Irrigation	6	0.07
		Industry (Non-urban)	2	0.02
		Industry (Urban)	9	0.26
	Fractured and Intergranular	Schedule 1	3	0.004
	Dasement	Urban (Excluding industrial and/or domestic)	1	0.01
		Water Supply service	9	0.36
		Agriculture: Irrigation	12	0.49
	Fractured Table Mountain	Agriculture: Watering Livestock	1	0.03
	Group (Peninsula)	Industry (Urban)	1	0.03
Cape Town Rim		Water Supply service	1	0.03
	Primary / Intergranular Aquifers	Agriculture: Aquaculture	1	0.004
		Agriculture: Irrigation	22	1.82
		Agriculture: Watering Livestock	3	0.06
		Industry (Urban)	9	0.20
		Industry (Non-urban)	70	2.37
		Schedule 1	7	0.02
		Urban (Excluding industrial and/or domestic)	3	0.02
		Water Supply service	9	0.31
		Agriculture: Aquaculture	3	0.001
		Agriculture: Irrigation	35	0.87
	Fractured and Intergranular	Industry (Non-urban)	8	0.05
	Basement	Industry (Urban)	11	0.27
		Schedule 1	3	0.003
		Water Supply service	2	3.50
Stellenbosch-Helderberg		Agriculture: Irrigation	38	1.06
		Agriculture: Watering Livestock	1	0.01
	Primary / Intergranular	Industry (Non-urban)	11	0.11
	Aquifers	Industry (Urban)	41	0.71
		Recreation	1	0.02
		Schedule 1	4	0.03
		Water Supply service	5	2.16

Page D

GRU	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)
		Agriculture: Aquaculture	1	0.22
		Agriculture: Irrigation	33	0.90
	Fractured and Intergraphier	Agriculture: Watering livestock	3	0.10
	Basement	Industry (Non-urban)	16	0.32
		Industry (Urban)	7	0.17
		Schedule 1	1	0.01
		Water Supply service	1	0.004
Paarl-Franschhoek	Fractured Table Mountain Group (Peninsula)	Agriculture: Irrigation	1	0.07
		Agriculture: Irrigation	140	5.04
		Agriculture: Watering Livestock	7	0.08
		Industry (Non-urban)	5	0.11
	Primary / Intergranular	Industry (Urban)	34	1.31
	Aquifers	Schedule 1	9	0.06
		Urban (Excluding industrial and/or domestic)	1	0.01
		Water Supply service	9	1.44
	Fractured and Intergranular Basement	Agriculture: Irrigation	78	5.44
		Agriculture: Watering livestock	18	0.67
		Industry (Non-urban)	2	0.002
		Industry (Urban)	19	1.44
		Mining	1	0.003
		Schedule 1	4	0.01
		Water Supply service	2	0.01
Malmesbury		Agriculture: Aquaculture	1	0.01
		Agriculture: Irrigation	63	4.51
		Agriculture: Watering livestock	28	1.84
	Primary / Intergranular	Industry (Non-urban)	2	0.13
	Aquiters	Industry (Urban)	20	0.39
		Urban (Excluding industrial and/or domestic)	1	0.02
		Water Supply service	6	0.27
		Agriculture: Aquaculture	1	0.16
	Frontured and Interconciler	Agriculture: Irrigation	70	3.08
Wellington	Basement	Agriculture: Watering livestock	5	0.26
		Industry (Non-urban)	2	0.00

Page E

GRU	RU	Water Use Sector	No. of Users	Total Volume (M m³/a)
		Industry (Urban)	11	0.12
		Recreation	1	0.00
		Schedule 1	6	0.01
		Water Supply service	3	0.04
	Priman/ / Intergrapular	Agriculture: Watering livestock	14	0.63
	Aquifers	Industry (Non-urban)	1	0.06
		Industry (Urban)	3	0.12
		Agriculture: Irrigation	30	2.00
	Fractured and Intergranular	Industry (Non-urban)	1	0.0004
	Basement	Schedule 1	1	0.001
		Water Supply service	2	0.01
		Agriculture: Irrigation	38	1.69
Tulbagh		Agriculture: Watering Livestock	2	0.01
	Primary / Intergranular Aquifers	Industry (Non-urban)	3	0.01
		Industry (Urban)	2	0.04
		Schedule 1	1	0.001
		Water Supply service	1	0.01
	Fractured and Intergranular Basement	Agriculture: Irrigation	19	1.52
		Agriculture: Watering livestock	3	0.06
Eendekuil Basin		Industry (Urban)	3	0.01
	Primary / Intergranular Aquifers	Agriculture: Irrigation	7	0.26
		Water Supply service	1	3.00
		Agriculture: Irrigation	5	0.09
	Fractured and Intergranular Basement	Industry (Urban)	1	0.0003
Middle-Lower Berg		Water Supply service	1	0.06
	Primary / Intergranular Aquifers	Agriculture: Irrigation	25	2.08
	Fractured and Intergranular Basement	Agriculture: Irrigation	3	0.65
		Agriculture: Irrigation	6	0.65
Northern Swartland	Primary / Intergranular Aquifers	Agriculture: Watering livestock	5	0.16
		Industry (Urban)	5	0.34
		Agriculture: Irrigation	5	0.71
Darling	Fractured and Intergranular Basement	Agriculture: Watering livestock	3	0.05
		Industry (Urban)	1	0.01
Vredenberg	Fractured and Intergranular Basement	Industry (Urban)	1	0.15

Page F

GRU	RU	Water Use Sector	No. of Users	Total Volume (M m ³ /a)
		Agriculture: Irrigation	1	0.25
	Primany / Intergrapular	Schedule 1	1	0.0002
	Aquifers	Urban (Excluding industrial and/or domestic)	3	0.76

Page G

APPENDIX C: Discharge

Appendix C-1: First-Order Discharge Estimations

Table C-1-1 Summary of estimated discharge per GRU per RU for Primary / Intergranular Aquifers as outlined in Section 4.4

GRU	RU	Sum of Baseflow per component M m³/a
	Primary / Intergranular Aquifers	
Cono Eloto	Primary / Intergranular	2.69
	Fractured and Intergranular Basement	0.01
Atlantis	Primary / Intergranular	0.20
	Fractured and Intergranular Basement	0.00
Vzorfontoin	Primary / Intergranular	0.18
rzenontem	Fractured and Intergranular Basement	0.01
Elandsfontoin	Primary / Intergranular	0.00
Elanosiontein	Fractured and Intergranular Basement	0.0005
Langebeen Read	Primary / Intergranular	0.00
	Fractured and Intergranular Basement	0.00
Adambaarakraal	Primary / Intergranular	0.00
Adamboerskraal	Fractured and Intergranular Basement	0.00
Total		3.08

Table C-1-2 Summary of estimated discharge per GRU per RU for Fractured Table Mountain Group Aquifers as outlined in Section 4.4

GRU	RU	Sum of Baseflow per component M m ³ /a
	Fractured Table Mountain Group Aquife	ers
	Primary / Intergranular Aquifers	1.98
Cano Boningula	Peninsula Aquifer	3.97E-03
	Fractured and Intergranular Other	0.01
	Fractured and Intergranular Basement	1.04
	Primary / Intergranular Aquifers	0.08
	Nardouw Aquifer	3.94
Steenbras-Nuweberg	Peninsula Aquifer	2.31
	Fractured and Intergranular Other	1.37
	Fractured and Intergranular Basement	0.24
	Primary / Intergranular Aquifers	3.45E-03
	Nardouw Aquifer	0.40
Drakensteinberge	Peninsula Aquifer	6.57
	Fractured and Intergranular Other	0.58
	Fractured and Intergranular Basement	0.00
	Primary / Intergranular Aquifers	0.95
	Nardouw Aquifer	0.80
Wemmershoek	Peninsula Aquifer	6.84
	Fractured and Intergranular Other	1.21
	Fractured and Intergranular Basement	0.13
	Primary / Intergranular Aquifers	0.12
	Nardouw Aquifer	0.54
Voëlvlei-Slanghoek	Peninsula Aquifer	2.79
	Fractured and Intergranular Other	0.74
	Fractured and Intergranular Basement	1.86E-08
	Primary / Intergranular Aquifers	0.00
Wite enhorm	Peninsula Aquifer	0.85
witsenberg	Fractured and Intergranular Other	0.08
	Fractured and Intergranular Basement	0.00
	Primary / Intergranular Aquifers	3.12E-04
	Nardouw Aquifer	2.85
Grootwinterhoek	Peninsula Aquifer	3.74
	Fractured and Intergranular Other	1.02
	Fractured and Intergranular Basement	2.61E-06
	Primary / Intergranular Aquifers	0.00
	Nardouw Aquifer	0.00
Piketberg	Peninsula Aquifer	0.07
	Fractured and Intergranular Other	0.05
	Fractured and Intergranular Basement	0.00
Total		42.53

Table C-1-3Summary of estimated discharge per GRU per RU for Fractured and Intergranular
Basement as outlined in Section 4.4

GRU	RU	Sum of Baseflow per component M m ³ /a				
	Fractured and Intergranular Basemen	t				
	Primary / Intergranular Aquifers	4.66				
Cono Town Bim	Peninsula Aquifer	3.97E-03				
Cape Town Rim Stellenbosch-Helderberg Paarl-Franschhoek Malmesbury Wellington Tulbagh Eendekuil Basin Middle-Lower Berg	Fractured and Intergranular Other	0.01				
	Fractured and Intergranular Basement	1.05				
	Primary / Intergranular Aquifers	3.88				
Stellenbosch-Helderberg	Peninsula Aquifer	1.03				
	Fractured and Intergranular Other	0.02				
	Fractured and Intergranular Basement	2.67				
	Primary / Intergranular Aquifers	3.47				
	Nardouw Aquifer	0.00				
Paarl-Franschhoek	Peninsula Aquifer	0.31				
	Fractured and Intergranular Other	0.01				
	Fractured and Intergranular Basement	0.94				
	Primary / Intergranular Aquifers	4.49				
Malmesbury	Peninsula Aquifer	0.03				
	Fractured and Intergranular Other	4.59E-03				
	Fractured and Intergranular Basement	7.30				
	Primary / Intergranular Aquifers	2.82				
Wellington	Peninsula Aquifer	0.06				
weinington	Fractured and Intergranular Other	0.03				
	Fractured and Intergranular Basement	5.03				
	Primary / Intergranular Aquifers	1.78				
Tulbagh	Peninsula Aquifer	0.00				
	Fractured and Intergranular Basement	1.86				
	Primary / Intergranular Aquifers	0.96				
Fondekuil Besin	Peninsula Aquifer	4.13E-03				
Eendekun Basin	Fractured and Intergranular Other	0.02				
	Fractured and Intergranular Basement	3.55				
	Primary / Intergranular Aquifers	0.73				
Middle Lower Porg	Peninsula Aquifer	0.01				
Middle-Lower Berg	Fractured and Intergranular Other	4.22E-03				
	Fractured and Intergranular Basement	2.82				
Northern Swortland	Primary / Intergranular Aquifers	2.86E-03				
Northern Swartland	Fractured and Intergranular Basement	0.02				
Darling	Primary / Intergranular Aquifers	2.08E-03				
Daning	Fractured and Intergranular Basement	0.08				
Vredenberg	Primary / Intergranular Aquifers	0.00				
vredenberg	Fractured and Intergranular Basement	0.00				
Total		49.66				

Page E

APPENDIX D: Water Quality

Appendix D-1: Threshold baseline concentrations

Table D-1 Threshold baseline concentrations established per parameter, per GRU, calculated using data from representative boreholes. Dashes indicate GRUs where no baseline concentration could be calculated due to lack of data from the selected borehole or the whole GRU.

GRU	Repres- entative Borehole	Sulphate (mg/l)	EC (mS/m)	рН	Ammonia (mg/l)	Nitrate + nitrite (mg/l)	Fluoride (mg/l)	Ortho- phosphate (mg/l)	Dissolved Aluminium (mg/l)	Dissolved Arsenic (mg/l)	Dissolved Chromium (mg/l)	Dissolved Iron (mg/l)	Dissolved Lead (mg/l)	Dissolved Manganese (mg/l)	Dissolved Mercury (mg/l)
						Pri	mary / Inte	rgranular Aq	uifers						
Adamboerskraal	93313	52.20	499.10	7.00	0.19	0.10	0.31	0.24	-	-	-	-	-	-	-
Atlantis	91733	24.70	99.74	7.73	1.16	0.05	1.16	0.10	-	-	-	-	-	-	-
Cape Flats	88847	44.40	113.72	8.30	0.08	8.35	0.26	0.03	0.500	0.054	-3	2.918	0.255	-7	-1
Elandsfontein	93871	12.90	49.10	7.49	0.14	4.62	0.24	0.19	-	-	-	-	-	-	-
Langebaan Road	93873	25.18	155.60	8.41	0.14	0.25	0.70	0.04	0.091	0.085	0.010	0.014	0.063	-6	0.029
Yzerfontein	89820	109.04	111.70	7.97	0.11	0.51	0.44	0.05	0.026	0.061	-5	0.118	0.034	-1	-
Fractured Table Mountain Group Aquifers															
Cape Peninsula	96073	12.20	25.80	6.96	0.02	0.07	0.26	1.02	-	-	-	-	-	-	-
Steenbras-Nuweberg (Peninsula)	H8A1	1.49	14.00	7.18	0.12	1.05	0.28	0.32	0.012	-3	-7	7.755	-7	0.527	-5
Steenbras-Nuweberg (Nardouw)	H1A3b	6.50	1-	5.91	2.88	0.20	0.50	0.20	0.040	0.010	0.020	0.024	0.010	0.025	-5
Wemmershoek	W7D1	3.45	9.27	8.26	0.45	0.53	0.16	0.05	-1	-1	-1	0.539	-1	0.714	-1
					F	ractured	and Intergr	anular Baser	ment Aquifer	s					
Cape Town Rim	96211	8.50	105.10	7.78	0.02	0.28	0.14	0.01	-	-	-	-	-	-	-
Darling	94570	96.10	192.00	6.80	0.02	0.83	0.15	0.01	-	-	-	-	-	-	-
Eendekuil Basin	96167	52.60	205.00	8.20	0.02	0.84	0.94	0.01	-	-	-	-	-	-	-
Malmesbury	89665	172.57	1549.90	7.15	0.10	503.08	0.26	0.10	0.033	0.025	-7	0.014	-8	0.677	-
Middle-Lower Berg	96095	342.80	841.00	7.63	0.02	6.16	0.57	0.01	-	-	-	-	-	-	-
Northern Swartland	96144	114.70	532.00	7.59	0.02	0.87	0.72	0.01	-	-	-	-	-	-	-
Paarl-Franschhoek	96019	2.00	14.40	7.04	0.06	0.76	0.25	0.10	-	-	-	-	-	-	-
Stellenbosch-Helderberg	96029	10.20	197.00	7.08	0.04	0.02	2.35	0.01	-	-	-	-	-	-	-
(Tygerberg Formation)															

GRU	Repres- entative Borehole	Sulphate (mg/l)	EC (mS/m)	рН	Ammonia (mg/l)	Nitrate + nitrite (mg/l)	Fluoride (mg/l)	Ortho- phosphate (mg/l)	Dissolved Aluminium (mg/l)	Dissolved Arsenic (mg/l)	Dissolved Chromium (mg/l)	Dissolved Iron (mg/l)	Dissolved Lead (mg/l)	Dissolved Manganese (mg/l)	Dissolved Mercury (mg/l)
Stellenbosch-Helderberg	96033	14.80	68.40	7.00	0.04	0.24	1.25	0.01	-	-	-	-	-	-	-
(Cape Granite Suite)															
Tulbagh	89812	142.75	370.98	8.28	0.10	0.02	0.80	0.02	-	-	-	-	-	-	-
Wellington	96016	118.00	202.00	7.56	0.14	1.39	1.09	0.01	-	-	-	-	-	-	-

Appendix D-2: Groundwater Quality Summary per GRU

Table D-2: Summary of threshold baseline concentrations, summary statistics, water types and water quality classes per GRU for Primary Intergranular Aquifers, Fractured Table Mountain Group Aquifers, and Fractured and Intergranular Basement Aquifers.

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
Primary / Intergranular Aquife	ers									
	Sulphate (mg/l)	52.20	52.20	1125.90	371.35	153.65		E		
	Electrical conductivity (mS/m)	499.10	499.10	4548.00	1655.58	787.6		E		
	рН	7.00	6.50	7.33	6.86	6.8		В		
	Ammonia (mg/l)	0.19	0.12	0.62	0.28	0.185		В		
	Nitrate + nitrite (mg/l)	0.10	0.02	0.10	0.04	0.02		-	C	
	Fluoride (mg/l)	0.31	0.14	0.50	0.31	0.305		В		В
	Orthophosphate (mg/l)	0.24	0.04	0.24	0.10	0.056	Na-Cl	-		
Adamboerskraal	Dissolved Aluminium (mg/l)	-	-	-	-	-		-		
	Dissolved Arsenic (mg/l)	-	-	-	-	-		-		
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		
	Dissolved Iron (mg/l)	-	-	-	-	-		-		
	Dissolved Lead (mg/l)	-	-	-	-	-		-		
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	24.70	2.00	355.70	39.01	19.8		С		
	Electrical conductivity (mS/m)	99.74	38.10	1122.70	125.54	92.2		С		
	рН	7.73	2.60	8.35	7.42	7.59		В		
Atlantis	Ammonia (mg/l)	1.16	0.02	1.22	0.14	0.05	Na-Cl, Ca-Mg,Cl,	А		
	Nitrate + nitrite (mg/l)	0.05	0.02	2.19	0.12	0.02	Ca-HCO3, Ca-Na- HCO3, Ca-SO4	С	В	С
	Fluoride (mg/l)	1.16	0.05	1.33	0.27	0.16		А		
	Orthophosphate (mg/l)	0.10	-	1.30	0.08	0.022		А		
	Dissolved Aluminium (mg/l)	-	-	-	-	-		-		

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
	Dissolved Arsenic (mg/l)	-	-	-	-	-		-		
	Dissolved Chromium (ma/l)	-	-	-	-	-		-		
	Dissolved Iron (mg/l)	-	-	-	-	-		-		
	Dissolved Lead	-	-	-	-	-		-		
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	44.40	2.00	326.00	52.17	45.4		D		
	Electrical conductivity (mS/m)	113.72	13.00	578.00	87.43	88.85	Na-Cl, Ca-Mg-Cl, Ca-HCO3, Ca-SO4	A	A	
	рН	8.30	5.07	8.55	7.79	7.84		А		
	Ammonia (mg/l)	0.08	0.02	31.89	0.72	0.059		С		
	Nitrate + nitrite (mg/l)	8.35	0.02	23.20	2.75	1.12		А		
	Fluoride (mg/l)	0.26	0.05	3.05	0.17	0.15		А		
	Orthophosphate (mg/l)	0.03	-	1.35	0.03	0.01		А		D
	Dissolved Aluminium (mg/l)	0.500	0.015	1.070	0.499	0.5		A		
Cape Flats	Dissolved Arsenic (mg/l)	0.054	0.002	0.139	0.051	0.05		A		
	Dissolved Chromium (mg/l)	0.003	0.001	0.063	0.004	0.003		А		
	Dissolved Iron (mg/l)	2.918	0.006	22.99	1.113	0.65		А		
	Dissolved Lead (mg/l)	0.255	0.002	0.856	0.065	0.025		А		
	Dissolved Manganese (mg/l)	0.007	0.001	0.033	0.005	0.004		А		
	Dissolved Mercury (mg/l)	0.001	0.001	14.013	0.048	0.001		A		
	Sulphate (mg/l)	12.90	12.10	29.20	15.68	12.1		В		
	Electrical conductivity (mS/m)	49.10	45.50	101.90	58.98	49.1		В		
Elandsfontein	pH	7.49	7.17	7.60	7.39	7.35	Na-CI, Ca-Mo-Cl	В	А	В
	Ammonia (mg/l)	0.14	0.04	0.14	0.10	0.12	,	А		
	Nitrate + nitrite (mg/l)	4.62	0.15	4.62	1.65	1.51		А		
	Fluoride (mg/l)	0.24	0.17	0.82	0.32	0.19		В		
GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
----------------	--------------------------------------	---------------------------	--------------------------	--------------------------	-----------------------	-------------------------	-----------------	---	----------------------------------	--
	Orthophosphate (mg/l)	0.19	0.01	0.30	0.17	0.185		В		
	Dissolved Aluminium (mg/l)	-	-	-	-	-		-		
	Dissolved Arsenic (mg/l)	-	-	-	-	-		-		
	Dissolved Chromium (mg/l)	-	-	-	-	-		-	-	
	Dissolved Iron (mg/l)	-	-	-	-	-		-		
	Dissolved Lead (mg/l)	-	-	-	-	-		-		
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	25.18	0.60	1149.50	103.48	56.1		С		
	Electrical conductivity (mS/m)	155.60	59.50	2365.20	261.62	166.3		С		
	pH	8.41	6.77	8.75	8.01	8.1		Α		
	Ammonia (mg/l)	0.14	-	0.55	0.05	0.025		А		
	Nitrate + nitrite (mg/l)	0.25	0.02	25.34	1.42	0.1055		В	-	
	Fluoride (mg/l)	0.70	0.22	2.55	0.86	0.81		В		
	Orthophosphate (mg/l)	0.04	-	0.24	0.04	0.025		В		
Langebaan Road	Dissolved Aluminium (mg/l)	0.091	0.001	0.099	0.035	0.03	Na-Cl, Ca-Mg-Cl	-	В	В
	Dissolved Arsenic (mg/l)	0.085	0.002	0.103	0.035	0.027		-		
	Dissolved Chromium (mg/l)	0.010	0.000	0.021	0.004	0.003		-		
	Dissolved Iron (mg/l)	0.014	0.001	0.031	0.008	0.006		А		
	Dissolved Lead (mg/l)	0.063	0.000	0.063	0.026	0.027		-		
	Dissolved Manganese (mg/l)	0.006	0.001	0.024	0.003	0.001		-		
	Dissolved Mercury (mg/l)	0.029	0.010	0.029	0.020	0.019		-		
	Sulphate (mg/l)	109.04	2.00	277.90	51.61	40.128		А		
Yzerfontein (r	Electrical conductivity (mS/m)	111.70	35.20	588.00	127.01	104.1	Na-Cl, Ca-Mg-Cl	в	А	
	pH	7.97	1.00	8.76	7.21	7.235		А		
	Ammonia (mg/l)	0.11	0.02	1.16	0.08	0.042		Α		

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category		
	Nitrate + nitrite	0.51	0.01	4.18	0.24	0.087		А				
	Fluoride (mg/l)	0.44	0.03	0.88	0.23	0.2		А				
	Orthophosphate (mg/l)	0.05	-	0.81	0.11	0.058		D				
	Dissolved Aluminium (mg/l)	0.026	0.019	0.026	0.023	0.023		-				
	Dissolved Arsenic (mg/l)	0.061	0.002	0.064	0.033	0.033		-				
	Dissolved Chromium (mg/l)	0.005	0.003	0.005	0.004	0.004		-				
	Dissolved Iron (mg/l)	0.118	0.020	0.123	0.072	0.072		-				
	Dissolved Lead (mg/l)	0.034	0.002	0.036	0.019	0.019		-				
	Dissolved Manganese (mg/l)	0.001	0.001	0.001	0.001	0.001		-				
	(mg/l)	-	-	-	-	-		-				
Fractured Table Mountain Gr	Fractured Table Mountain Group Aquifers											
	Sulphate (mg/l)	12.20	12.20	107.40	64.75	72.2		F				
	Electrical conductivity (mS/m)	25.80	25.80	119.00	78.52	89.8		F	_			
	рН	6.96	6.54	7.57	7.07	7.1		D				
	Ammonia (mg/l)	0.02	0.02	2.51	0.34	0.02		В				
	Nitrate + nitrite (mg/l)	0.07	0.02	10.89	3.67	0.32		E				
	Fluoride (mg/l)	0.26	0.05	0.33	0.16	0.15		A				
	(mg/l)	1.02	0.01	1.08	0.21	0.016		A				
Cape Peninsula	Aluminium (mg/l)	-	-	-	-	-	Na-Cl, Ca-Mg-Cl,	-	D	В		
	Dissolved Arsenic (mg/l)	-	-	-	-	-	04-11003	-				
	Dissolved Chromium (mg/l)	-	-	-	-	-		-				
	Dissolved Iron (mg/l)	-	-	-	-	-		-				
	Dissolved Lead (mg/l)	-	-	-	-	-		-				
	Dissolved Manganese (mg/l)	-	-	-	-	-		-				
	Dissolved Mercury (mg/l)	-	-	-	-	-		-				
	Sulphate (mg/l)	6.50	0.40	17.70	3.66	3.35		A	В	В		

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
	Electrical conductivity (mS/m)	10.0	2.00	24.20	10.60	9		В		
	pH	5.91	4.63	8.61	5.75	5.57		В		
	Ammonia (mg/l)	2.88	0.01	12.22	0.64	0.1		А		
	Nitrate + nitrite (mg/l)	0.20	-	3.66	0.30	0.2		А		
	Fluoride (mg/l)	0.50	0.05	0.50	0.21	0.1		-		
Steenbras-Nuweberg (Nardouw)	Orthophosphate (mg/l)	0.20	-	0.20	0.10	0.1		-		
	Dissolved Aluminium (mg/l)	0.040	0.001	0.074	0.024	0.012	– Na-Cl, Ca-Mg-Cl,	А		
	Dissolved Arsenic (mg/l)	0.010	0.001	0.040	0.006	0.003	Ca-Na-HCO3	А		
	Dissolved Chromium (mg/l)	0.020	0.001	0.020	0.010	0.007		-		
	Dissolved Iron (mg/l)	0.024	0.024	5.266	0.363	0.024	_	А		
	Dissolved Lead (mg/l)	0.010	0.001	0.040	0.008	0.007		А		
	Dissolved Manganese (mg/l)	0.025	0.019	0.700	0.063	0.019	_	А		
	Dissolved Mercury (mg/l)	0.005	0.001	0.005	0.005	0.005		-		
	Sulphate (mg/l)	1.49	0.20	61.00	6.25	4.2		E		
	Electrical conductivity (mS/m)	14.00	2.47	38.00	14.14	13		D		
	рН	7.18	4.87	9.35	7.01	6.8		С		
	Ammonia (mg/l)	0.12	0.00	12.00	0.42	0.1		С		
	Nitrate + nitrite (mg/l)	1.05	0.00	1.20	0.12	0.1		A		
	Fluoride (mg/l)	0.28	0.10	0.76	0.40	0.5		С		
Steenbras-Nuweberg	Orthophosphate (mg/l)	0.32	0.00	0.97	0.15	0.1	Na-Cl, Ca-Mg-Cl,	А		5
(Peninsula)	Dissolved Aluminium (mg/l)	0.012	0.001	0.080	0.040	0.04	Ca-HCO3, Ca-Na- HCO3	А	D	В
	Dissolved Arsenic (mg/l)	0.003	0.001	0.010	0.007	0.01		-		
	Dissolved Chromium (mg/l)	0.007	0.007	0.020	0.015	0.02		-		
	Dissolved Iron (mg/l)	7.755	0.004	12.06	4.998	2.153		А		
	Dissolved Lead (mg/l)	0.007	0.001	0.010	0.008	0.01		-		
	Dissolved Manganese (mg/l)	0.527	0.006	3.162	0.625	0.387		В	-	

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
	Dissolved Mercury (ma/l)	0.005	0.001	0.005	0.004	0.005		-		
	Sulphate (mg/l)	3.45	0.20	20.90	2.77	0.72		А		
	Electrical conductivity (mS/m)	9.27	4.66	16.00	8.74	8.1		С		
	рН	8.26	6.40	10.01	7.58	7.3		Α		
	Ammonia (mg/l)	0.45	0.01	0.66	0.13	0.05		A	-	
	(mg/l)	0.53	0.00	1.27	0.13	0.018		А		
	Fluoride (mg/l)	0.16	0.05	0.39	0.17	0.11		A	A	
Wemmershoek	(mg/l)	0.05	0.02	0.43	0.06	0.012		А		
	Dissolved Aluminium (mg/l)	0.001	0.001	0.008	0.003	0.001	Na-Cl, Ca-HCO3,	А		А
	Dissolved Arsenic (mg/l)	0.001	0.001	0.001	0.001	0.001		-		
	Dissolved Chromium (mg/l)	0.001	0.001	0.001	0.001	0.001		А		
	Dissolved Iron (mg/l)	0.539	0.006	0.827	0.457	0.539		А		
	Dissolved Lead (mg/l)	0.001	0.001	0.001	0.001	0.001		-	-	
	Dissolved Manganese (mg/l)	0.714	0.001	0.714	0.240	0.003286		-		
	Dissolved Mercury (mg/l)	0.001	0.001	0.001	0.001	0.001		-		
Fractured and Intergranular I	Basin									
	Sulphate (mg/l)	8.50	5.50	350.00	60.92	34.1	-	F	-	
	Electrical conductivity (mS/m)	105.10	21.00	659.00	150.69	92		В		
	pH	7.78	7.00	8.62	7.51	7.47		Α		
	Ammonia (mg/l)	0.02	0.02	0.75	0.06	0.02		А		
	Nitrate + nitrite (mg/l)	0.28	0.02	6.57	0.92	0.13		В		
	Fluoride (mg/l)	0.14	0.12	2.60	0.45	0.27		F		
Cape Town Rim	Orthophosphate (mg/l)	0.01	0.003	0.13	0.02	0.01	Na-Cl, Ca-Mg-Cl	D	С	С
	Dissolved Aluminium (ma/l)	-	-	-	-	-		-		
	Dissolved Arsenic (mg/l)	-	-	-	-	-	1	-		
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		
	Dissolved Iron (mg/l)	-	-	-	-	-		-	—	

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
	Dissolved Lead	-	-	-	-	-		-		
	Dissolved									
	Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	96.10	10.70	542.20	150.67	96.1		С		
	Electrical conductivity (mS/m)	192.00	108.60	1100.00	459.57	281.6		D		
	рН	6.80	6.70	7.86	7.22	7.2		E		
Darling	Ammonia (mg/l)	0.02	0.02	0.08	0.03	0.02		В		
	Nitrate + nitrite (mg/l)	0.83	0.02	4.16	1.19	0.83		С		
	Fluoride (mg/l)	0.15	0.10	1.50	0.66	0.56		E		
	Orthophosphate (mg/l)	0.01	0.003	0.02	0.01	0.003	_	В		
	Dissolved Aluminium (mg/l)	-	-	-	-	-	Na-Cl	-	D	С
	Dissolved Arsenic (mg/l)	-	-	-	-	-		-		
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		
	Dissolved Iron (mg/l)	-	-	-	-	-		-		
	Dissolved Lead (mg/l)	-	-	-	-	-		-	-	
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	52.60	7.30	219.00	91.19	79.55		E		
	Electrical conductivity (mS/m)	205.00	42.10	583.00	286.01	233		D		
	рН	8.20	7.86	8.45	8.14	8.135		С		
	Ammonia (mg/l)	0.02	0.02	0.05	0.02	0.02		А		
	Nitrate + nitrite (mg/l)	0.84	0.04	5.39	1.38	0.8545	Na-CL Ca-Mg-Cl	С		
Eendekuil Basin	Fluoride (mg/l)	0.94	0.20	1.87	0.85	1.005	Ca-SO4	D	С	С
	(mg/l)	0.01	0.01	0.02	0.01	0.0065		А		
	Dissolved Aluminium (mg/l)	-	-	-	-	-		-		
	Dissolved Arsenic (mg/l)	-	-	-	-	-		-		
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
	Dissolved Iron	-	-	-	-	-		-		
	Dissolved Lead (mg/l)	-	-	-	-	-		-		
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	172.57	1.50	360.70	63.47	33.3		А		
	Electrical conductivity (mS/m)	1549.90	29.66	2110.00	220.90	107.9		А		
	рН	7.15	1.00	8.60	7.38	7.644		D		
	Ammonia (mg/l)	0.10	0.00	1.27	0.05	0.025		А		
Malmesbury	Nitrate + nitrite (mg/l)	503.08	0.02	589.68	20.16	0.562		А		
	Fluoride (mg/l)	0.26	0.03	2.94	0.50	0.375	-	С		
	Orthophosphate (mg/l)	0.10	0.00	14.00	0.12	0.022		А		
	Dissolved Aluminium (mg/l)	0.033	0.001	0.139	0.025	0.018	Na-Cl, Ca-Mg-Cl, Ca-SO4	А	A	В
	Dissolved Arsenic (mg/l)	0.025	0.002	0.103	0.034	0.025		А		
	Dissolved Chromium (mg/l)	0.007	0.003	0.026	0.004	0.003	-	А		
	Dissolved Iron (mg/l)	0.014	0.002	1.892	0.031	0.003		А	-	
	Dissolved Lead (mg/l)	0.008	0.008	0.063	0.024	0.008		А		
	Dissolved Manganese (mg/l)	0.677	0.001	1.190	0.073	0.001		А		
	Dissolved Mercury (mg/l)	0.00	0.008	0.075	0.021	0.019		А		
	Sulphate (mg/l)	342.80	3.52	799.60	216.13	196.9		А		
	Electrical conductivity (mS/m)	841.00	20.68	1212.00	601.50	636		А		
	pH	7.63	3.11	8.71	7.56	7.7		D		
	Ammonia (mg/l)	0.02	0.02	1.37	0.10	0.0415		D		
Middle-Lower Berg	Nitrate + nitrite (mg/l)	6.16	0.02	24.96	3.72	1.237	Na-Cl	А	с	С
	Fluoride (mg/l)	0.57	0.17	2.22	0.69	0.6725		D		
	Orthophosphate (mg/l)	0.01	0.00	0.13	0.02	0.0125		E		
	Dissolved Aluminium (mg/l)	0.00	0.01	0.028	0.019	0.019		-		
	Dissolved Arsenic (mg/l)	0.00	0.002	0.025	0.0135	0.0135		-		

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
	Dissolved Chromium (mg/l)	0.00	0.002	0.012	0.007	0.007		-		
	Dissolved Iron (mg/l)	0.00	0.002	0.021	0.0115	0.0115		-		
	Dissolved Lead (mg/l)	0.00	0.002	0.008	0.005	0.005		-		
	Dissolved Manganese (mg/l)	0.00	0.001	0.001	0.001	0.001		-		
SRU Northern Swartland Paarl-Franschoek	Dissolved Mercury (mg/l)	0.00						-		
	Sulphate (mg/l)	114.70	7.90	484.70	140.03	114.7		С		
	Electrical conductivity (mS/m)	532.00	49.70	1175.50	457.35	400		В		
	рН	7.59	5.55	8.13	7.52	7.7		D		
	Ammonia (mg/l)	0.02	0.02	0.52	0.06	0.02		В		
	Nitrate + nitrite (mg/l)	0.87	0.02	21.53	3.48	0.962		D		
	Fluoride (mg/l)	0.72	0.15	1.25	0.63	0.7		С		
	Orthophosphate (mg/l)	0.01	0.00	0.11	0.02	0.014	Na-Cl, Ca-Mg-Cl	D	-	
Northern Swartland	Dissolved Aluminium (mg/l)	-	-	-	-	-		-	с	С
	Dissolved Arsenic (mg/l)	-	-	-	-	-		-	-	
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		
	Dissolved Iron (mg/l)	-	-	-	-	-		-		
	Dissolved Lead (mg/l)	-	-	-	-	-		-		
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	2.00	2.00	2.00	2.00	2		-		1
	Electrical conductivity (mS/m)	14.40	14.40	14.40	-	-		-		
	pH	7.04	7.04	7.04	-	-		-		I
	Ammonia (mg/l)	0.06	0.06	0.06	-	-		-		I
Paarl-Franschoek	Nitrate + nitrite (mg/l)	0.76	0.76	0.76	-	-	Na-Cl	-	n/a	n/a
	Fluoride (mg/l)	0.25	0.25	0.25	-	-		-		I
F (((/ /	Orthophosphate (mg/l)	0.10	0.10	0.10	-	-		-		
	Dissolved Aluminium (mg/l)	-	-	-	-	-	-	-	_	

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
	Dissolved Arsenic	-	-	-	-	-		-		
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		
	Dissolved Iron (mg/l)	-	-	-	-	-		-		
	Dissolved Lead (mg/l)	-	-	-	-	-		-		
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	10.20	7.70	338.40	111.00	73.05		E		
	Electrical conductivity (mS/m)	197.00	32.70	885.00	289.10	203.00		D		
	рН	7.08	6.72	7.18	6.96	6.98		В		
	Ammonia (mg/l)	0.04	0.02	0.09	0.05	0.05		D		
	Nitrate + nitrite (mg/l)	0.02	0.02	5.61	1.25	0.21		E		
	Fluoride (mg/l)	2.35	0.05	2.61	1.10	0.67		В		
	Orthophosphate (mg/l)	0.02	0.007	0.078	0.02	0.009		D		6
Stellenbosch-Helderberg	Dissolved Aluminium (mg/l)	-	-	-	-	-		-		
(Tygerberg)	Dissolved Arsenic (mg/l)	-	-	-	-	-	Na-Cl, Ca-Mg-Cl	-	D	С
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		
	Dissolved Iron (mg/l)	-	-	-	-	-		-		
	Dissolved Lead (mg/l)	-	-	-	-	-		-		
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	14.80	2.00	289.80	35.00	5.9		В		
E C C	Electrical conductivity (mS/m)	68.40	17.60	197.00	62.10	48.9		В		
Stellenbosch-Helderberg	pH	7.00	6.41	7.48	6.90	7	Na-Cl	С	D	С
(Cape Granite Suite)	Ammonia (mg/l)	0.04	0.04	0.11	0.10	0.05	-	E		
N (r F	Nitrate + nitrite (mg/l)	0.24	0.02	8.34	1.80	0.94		E		
	Fluoride (mg/l)	1.25	0.16	2.46	0.80	0.41		В	-	

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
	Orthophosphate (mg/l)	0.01						F		
	Dissolved Aluminium (mg/l)	-	-	-	-	-		-		
	Dissolved Arsenic (mg/l)	-	-	-	-	-		-		
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		
	Dissolved Iron (mg/l)	-	-	-	-	-		-	-	
	Dissolved Lead (mg/l)	-	-	-	-	-		-		
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	142.75	5.00	150.00	77.50	77.5		-		
	Electrical conductivity (mS/m)	370.98	9.60	390.00	199.80	199.8		-		
	рН	8.28	7.23	8.34	7.79	7.785		-		
	Ammonia (mg/l)	0.10	0.02	0.11	0.06	0.0635		-		
	Nitrate + nitrite (mg/l)	0.02	0.02	0.02	0.02	0.02		-		
	Fluoride (mg/l)	0.80	0.39	0.82	0.61	0.605		-	4	
	Orthophosphate (mg/l)	0.02	0.01	0.02	0.01	0.0125		-		
Tulbagh	Dissolved Aluminium (mg/l)	-	-	-	-	-	Na-Cl	-	n/a	
	Dissolved Arsenic (mg/l)	-	-	-	-	-		-		
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		n/a
	Dissolved Iron (mg/l)	-	-	-	-	-		-		
	Dissolved Lead (mg/l)	-	-	-	-	-		-		
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		
	Sulphate (mg/l)	118.00	4.30	118.00	42.20	4.3		-		
	Electrical									
Wellington (r	conductivity (mS/m)	202.00	25.60	202.00	85.77	29.7	Na-Cl	-	В	В
	рН	7.56	7.03	7.56	7.33	7.4	42 - B	-		
	Ammonia (mg/l)	0.14	0.05	0.21	0.13	0.142		В		

GRU	Parameter	Baseline concentration	Minimum concentration	Maximum concentration	Average concentration	Median concentration	Water types	Parameter Specific Water Quality Categories	GRU Water Quality Category	Adjusted Water Quality Category
	Nitrate + nitrite (mg/l)	1.39	1.26	1.39	1.31	1.278		-		
	Fluoride (mg/l)	1.09	0.22	1.09	0.52	0.26		-		
	Orthophosphate (mg/l)	0.01	0.01	0.14	0.05	0.011		В		
	Dissolved Aluminium (mg/l)	-	-	-	-	-		-		
	Dissolved Arsenic (mg/l)	-	-	-	-	-		-		
	Dissolved Chromium (mg/l)	-	-	-	-	-		-		
	Dissolved Iron (mg/l)	-	-	-	-	-		-		
	Dissolved Lead (mg/l)	-	-	-	-	-		-		
	Dissolved Manganese (mg/l)	-	-	-	-	-		-		
	Dissolved Mercury (mg/l)	-	-	-	-	-		-		